

Python Reinforcement
Learning

Solve complex real-world problems by mastering
reinforcement learning algorithms using OpenAI Gym and
TensorFlow

Sudharsan Ravichandiran
Sean Saito
Rajalingappaa Shanmugamani
Yang Wenzhuo

BIRMINGHAM - MUMBAI

Python Reinforcement Learning
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2019

Production reference: 1170419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-977-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Sudharsan Ravichandiran is a data scientist, researcher, artificial intelligence enthusiast,
and YouTuber (search for Sudharsan reinforcement learning). He completed his bachelors
in information technology at Anna University. His area of research focuses on practical
implementations of deep learning and reinforcement learning, which includes natural
language processing and computer vision. He used to be a freelance web developer and
designer and has designed award-winning websites. He is an open source contributor and
loves answering questions on Stack Overflow.

Sean Saito is the youngest ever Machine Learning Developer at SAP and the first bachelor
hired for the position. He currently researches and develops machine learning algorithms
that automate financial processes. He graduated from Yale-NUS College in 2017 with a
Bachelor of Science degree (with Honours), where he explored unsupervised feature
extraction for his thesis. Having a profound interest in hackathons, Sean represented
Singapore during Data Science Game 2016, the largest student data science competition.
Before attending university in Singapore, Sean grew up in Tokyo, Los Angeles, and Boston.

Writing this book is a daunting task for any 23-year-old, and hence I would like to thank
many people who made this possible. My greatest words of gratitude belong to my mother
and brother for giving me as much love, understanding, and guidance as anyone can
fathom. Many thanks also goes to my closest friends and mentors, all from whom I've
acquired much knowledge and wisdom, for their encouragement and advice.

Rajalingappaa Shanmugamani is currently working as an Engineering Manager for a Deep
learning team at Kairos. Previously, he worked as a Senior Machine Learning Developer at
SAP, Singapore and worked at various startups in developing machine learning products.
He has a Masters from Indian Institute of Technology—Madras. He has published articles
in peer-reviewed journals and conferences and submitted applications for several patents in
the area of machine learning. In his spare time, he coaches programming and machine
learning to school students and engineers.

I thank my spouse Ezhil, mom, dad, family and friends for their immense support. I thank
all the teachers, colleagues and mentors from whom I have learned a lot. I thank the co-
authors Wen and Sean making their contributions a pleasure to read. I thank the
publishing team from Packt especially Snehal for encouraging at difficult times.

Yang Wenzhuo works as a Data Scientist at SAP, Singapore. He got a bachelor's degree in
computer science from Zhejiang University in 2011 and a Ph.D. in machine learning from
the National University of Singapore in 2016. His research focuses on optimization in
machine learning and deep reinforcement learning. He has published papers on top
machine learning/computer vision conferences including ICML and CVPR, and operations
research journals including Mathematical Programming.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Reinforcement Learning 7
What is RL? 7
RL algorithm 9
How RL differs from other ML paradigms 10
Elements of RL 10

Agent 10
Policy function 11
Value function 11
Model 11

Agent environment interface 12
Types of RL environment 13

Deterministic environment 13
Stochastic environment 13
Fully observable environment 13
Partially observable environment 14
Discrete environment 14
Continuous environment 14
Episodic and non-episodic environment 14
Single and multi-agent environment 14

RL platforms 15
OpenAI Gym and Universe 15
DeepMind Lab 15
RL-Glue 15
Project Malmo 16
ViZDoom 16

Applications of RL 16
Education 16
Medicine and healthcare 16
Manufacturing 17
Inventory management 17
Finance 17
Natural Language Processing and Computer Vision 17

Summary 18
Questions 18
Further reading 18

Chapter 2: Getting Started with OpenAI and TensorFlow 19
Setting up your machine 19

Table of Contents

[ii]

Installing Anaconda 20
Installing Docker 21
Installing OpenAI Gym and Universe 22

Common error fixes 23
OpenAI Gym 24

Basic simulations 24
Training a robot to walk 27

OpenAI Universe 29
Building a video game bot 29

TensorFlow 33
Variables, constants, and placeholders 34

Variables 34
Constants 34
Placeholders 35

Computation graph 35
Sessions 36
TensorBoard 37

Adding scope 38
Summary 40
Questions 41
Further reading 41

Chapter 3: The Markov Decision Process and Dynamic Programming 42
The Markov chain and Markov process 42
Markov Decision Process 44

Rewards and returns 45
Episodic and continuous tasks 45
Discount factor 45
The policy function 46
State value function 47
State-action value function (Q function) 47

The Bellman equation and optimality 48
Deriving the Bellman equation for value and Q functions 49

Solving the Bellman equation 51
Dynamic programming 51

Value iteration 52
Policy iteration 55

Solving the frozen lake problem 58
Value iteration 60
Policy iteration 65

Summary 68
Questions 68
Further reading 69

Chapter 4: Gaming with Monte Carlo Methods 70
Monte Carlo methods 70

Table of Contents

[iii]

Estimating the value of pi using Monte Carlo 71
Monte Carlo prediction 74

First visit Monte Carlo 76
Every visit Monte Carlo 76
Let's play Blackjack with Monte Carlo 76

Monte Carlo control 84
Monte Carlo exploration starts 84
On-policy Monte Carlo control 86
Off-policy Monte Carlo control 89

Summary 90
Questions 91
Further reading 91

Chapter 5: Temporal Difference Learning 92
TD learning 92
TD prediction 93
TD control 95

Q learning 96
Solving the taxi problem using Q learning 101

SARSA 104
Solving the taxi problem using SARSA 108

The difference between Q learning and SARSA 111
Summary 112
Questions 112
Further reading 112

Chapter 6: Multi-Armed Bandit Problem 113
The MAB problem 113

The epsilon-greedy policy 115
The softmax exploration algorithm 117
The upper confidence bound algorithm 118
The Thompson sampling algorithm 121

Applications of MAB 123
Identifying the right advertisement banner using MAB 124
Contextual bandits 126
Summary 127
Questions 127
Further reading 128

Chapter 7: Playing Atari Games 129
Introduction to Atari games 130
Building an Atari emulator 131

Getting started 131
Implementation of the Atari emulator 133

Atari simulator using gym 135

Table of Contents

[iv]

Data preparation 136
Deep Q-learning 140

Basic elements of reinforcement learning 140
Demonstrating basic Q-learning algorithm 141

Implementation of DQN 153
Experiments 161
Summary 163

Chapter 8: Atari Games with Deep Q Network 164
What is a Deep Q Network? 165
Architecture of DQN 166

Convolutional network 166
Experience replay 167
Target network 168
Clipping rewards 169
Understanding the algorithm 169

Building an agent to play Atari games 170
Double DQN 179
Prioritized experience replay 180
Dueling network architecture 181
Summary 183
Questions 183
Further reading 183

Chapter 9: Playing Doom with a Deep Recurrent Q Network 184
DRQN 185

Architecture of DRQN 186
Training an agent to play Doom 187

Basic Doom game 188
Doom with DRQN 189

DARQN 199
Architecture of DARQN 200

Summary 201
Questions 201
Further reading 202

Chapter 10: The Asynchronous Advantage Actor Critic Network 203
The Asynchronous Advantage Actor Critic 204

The three As 204
The architecture of A3C 205
How A3C works 205

Driving up a mountain with A3C 207
Visualization in TensorBoard 215

Summary 218
Questions 219

Table of Contents

[v]

Further reading 219

Chapter 11: Policy Gradients and Optimization 220
Policy gradient 221

Lunar Lander using policy gradients 221
Deep deterministic policy gradient 226

Swinging a pendulum 228
Trust Region Policy Optimization 235
Proximal Policy Optimization 240
Summary 242
Questions 243
Further reading 243

Chapter 12: Balancing CartPole 244
OpenAI Gym 244

Gym 244
Installation 245
Running an environment 245
Atari 248
Algorithmic tasks 248
MuJoCo 249
Robotics 250

Markov models 251
CartPole 251

Summary 255

Chapter 13: Simulating Control Tasks 256
Introduction to control tasks 257

Getting started 257
The classic control tasks 259

Deterministic policy gradient 264
The theory behind policy gradient 265
DPG algorithm 267
Implementation of DDPG 268
Experiments 275

Trust region policy optimization 278
Theory behind TRPO 279
TRPO algorithm 282
Experiments on MuJoCo tasks 284

Summary 285

Chapter 14: Building Virtual Worlds in Minecraft 286
Introduction to the Minecraft environment 287
Data preparation 289
Asynchronous advantage actor-critic algorithm 291
Implementation of A3C 297

Table of Contents

[vi]

Experiments 311
Summary 312

Chapter 15: Learning to Play Go 313
A brief introduction to Go 313

Go and other board games 314
Go and AI research 314

Monte Carlo tree search 315
Selection 315
Expansion 317
Simulation 318
Update 319

AlphaGo 320
Supervised learning policy networks 320
Reinforcement learning policy networks 321
Value network 321
Combining neural networks and MCTS 322

AlphaGo Zero 323
Training AlphaGo Zero 324
Comparison with AlphaGo 324

Implementing AlphaGo Zero 325
Policy and value networks 325

preprocessing.py 326
features.py 329
network.py 330

Monte Carlo tree search 337
mcts.py 337

Combining PolicyValueNetwork and MCTS 341
alphagozero_agent.py 342

Putting everything together 346
controller.py 346
train.py 353

Summary 356
References 357

Chapter 16: Creating a Chatbot 358
The background problem 358

Dataset 358
Step-by-step guide 359

Data parser 359
Data reader 361
Helper methods 364
Chatbot model 370
Training the data 372
Testing and results 379

Summary 382

Table of Contents

[vii]

Chapter 17: Generating a Deep Learning Image Classifier 383
Neural Architecture Search 384

Generating and training child networks 385
Training the Controller 387
Training algorithm 389

Implementing NAS 390
child_network.py 390
cifar10_processor.py 393
controller.py 395
Method for generating the Controller 397

Generating a child network using the Controller 399
train_controller method 401
Testing ChildCNN 403

config.py 404
train.py 405
Additional exercises 407

Advantages of NAS 407
Summary 409

Chapter 18: Predicting Future Stock Prices 410
Background problem 410
Data used 410
Step-by-step guide 412

Actor script 413
Critic script 414
Agent script 416
Helper script 421
Training the data 423
Final result 426

Summary 427

Chapter 19: Capstone Project - Car Racing Using DQN 428
Environment wrapper functions 429
Dueling network 432
Replay memory 434
Training the network 435
Car racing 441
Summary 444
Questions 445
Further reading 445

Chapter 20: Looking Ahead 446
The shortcomings of reinforcement learning 446

Resource efficiency 447
Reproducibility 447
Explainability/accountability 448

Table of Contents

[viii]

Susceptibility to attacks 449
Upcoming developments in reinforcement learning 450

Addressing the limitations 451
Transfer learning 451
Multi-agent reinforcement learning 453

Summary 455
References 455

Assessments 456

Other Books You May Enjoy 462

Index 465

Preface
Reinforcement Learning (RL) is the trending and most promising branch of artificial
intelligence. This course will help you master not only the basic reinforcement learning
algorithms but also the advanced deep reinforcement learning algorithms.

The course starts with an introduction to Reinforcement Learning followed by OpenAI
Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as
Markov Decision Process, Monte Carlo methods, and dynamic programming, including
value and policy iteration. As you make your way through the book, you'll work on various
datasets including image, text, and video. This example-rich guide will introduce you to
deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and
TRPO. You will gain experience in several domains, including gaming, image processing,
and physical simulations. You'll explore technologies such as TensorFlow and OpenAI
Gym to implement deep learning reinforcement learning algorithms that also predict stock
prices, generate natural language, and even build other neural networks. You will also
learn about imagination-augmented agents, learning from human preference, DQfD, HER,
and many more of the recent advancements in reinforcement learning.

By the end of the course, you will have all the knowledge and experience needed to
implement reinforcement learning and deep reinforcement learning in your projects, and
you will be all set to enter the world of artificial intelligence to solve various problems in
real-life.

This Learning Path includes content from the following Packt products:

Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran
Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and
Rajalingappaa Shanmugamani

Who this book is for
If you're a machine learning developer or deep learning enthusiast interested in artificial
intelligence and want to learn about reinforcement learning and deep reinforcement
learning from scratch, this Learning Path is for you. You will be all ready to build a better
performing, automated, and optimized self-learning agent. Some knowledge of linear
algebra, calculus, basic DL approaches, and Python will help you understand the concepts.

Preface

[2]

What this book covers
Chapter 1, Introduction to Reinforcement Learning, helps us understand what reinforcement
learning is and how it works. We will learn about various elements of reinforcement
learning, such as agents, environments, policies, and models, and we will see different
types of environments, platforms, and libraries used for reinforcement learning. Later in the
chapter, we will see some of the applications of reinforcement learning.

Chapter 2, Getting Started with OpenAI and TensorFlow, helps us set up our machine for
various reinforcement learning tasks. We will learn how to set up our machine by installing
Anaconda, Docker, OpenAI Gym, Universe, and TensorFlow. Then we will learn how to
simulate agents in OpenAI Gym, and we will see how to build a video game bot. We will
also learn the fundamentals of TensorFlow and see how to use TensorBoard for
visualizations.

Chapter 3, The Markov Decision Process and Dynamic Programming, starts by explaining what
a Markov chain and a Markov process is, and then we will see how reinforcement learning
problems can be modeled as Markov Decision Processes. We will also learn about several
fundamental concepts, such as value functions, Q functions, and the Bellman equation.
Then we will see what dynamic programming is and how to solve the frozen lake problem
using value and policy iteration.

Chapter 4, Gaming with Monte Carlo Methods, explains Monte Carlo methods and different
types of Monte Carlo prediction methods, such as first visit MC and every visit MC. We
will also learn how to use Monte Carlo methods to play blackjack. Then we will explore
different on-policy and off-policy Monte Carlo control methods.

Chapter 5, Temporal Difference Learning, covers temporal-difference (TD) learning, TD
prediction, and TD off-policy and on-policy control methods such as Q learning and
SARSA. We will also learn how to solve the taxi problem using Q learning and SARSA.

Chapter 6, Multi-Armed Bandit Problem, deals with one of the classic problems of
reinforcement learning, the multi-armed bandit (MAB) or k-armed bandit problem. We will
learn how to solve this problem using various exploration strategies, such as epsilon-
greedy, softmax exploration, UCB, and Thompson sampling. Later in the chapter, we will
see how to show the right ad banner to the user using MAB.

Chapter 7, Playing Atari Games, will get us creating our first deep RL algorithm to play
ATARI games.

Preface

[3]

Chapter 8, Atari Games with Deep Q Network, covers one of the most widely used deep
reinforcement learning algorithms, which is called the deep Q network (DQN). We will
learn about DQN by exploring its various components, and then we will see how to build
an agent to play Atari games using DQN. Then we will look at some of the upgrades to the
DQN architecture, such as double DQN and dueling DQN.

Chapter 9, Playing Doom with a Deep Recurrent Q Network, explains the deep recurrent Q
network (DRQN) and how it differs from a DQN. We will see how to build an agent to play
Doom using a DRQN. Later in the chapter, we will learn about the deep attention recurrent
Q network, which adds the attention mechanism to the DRQN architecture.

Chapter 10, The Asynchronous Advantage Actor Critic Network, explains how the
Asynchronous Advantage Actor Critic (A3C) network works. We will explore the A3C
architecture in detail, and then we will learn how to build an agent for driving up the
mountain using A3C.

Chapter 11, Policy Gradients and Optimization, covers how policy gradients help us find the
right policy without needing the Q function. We will also explore the deep deterministic
policy gradient method. Later in the chapter, we will see state of the art policy optimization
methods such as trust region policy optimization and proximal policy optimization.

Chapter 12, Balancing CartPole, will have us implement our first RL algorithms in Python
and TensorFlow to solve the cart pole balancing problem.

Chapter 13, Simulating Control Tasks, provides a brief introduction to actor-critic algorithms
for continuous control problems. We will learn how to simulate classic control tasks, look at
how to implement basic actor-critic algorithms, and understand the state-of-the-art
algorithms for control.

Chapter 14, Building Virtual Worlds in Minecraft, takes the advanced concepts covered in
previous chapters and applies them to Minecraft, a game more complex than those found
on ATARI.

Chapter 15, Learning to Play Go, will have us building a model that can play Go, the
popular Asian board game that is considered one of the world's most complicated games.

Chapter 16, Creating a Chatbot, will teach us how to apply deep RL in natural language
processing. Our reward function will be a future-looking function, and we will learn how to
think in terms of probability when creating this function.

Preface

[4]

Chapter 17, Generating a Deep Learning Image Classifier, introduces one of the latest and
most exciting advancements in RL: generating deep learning models using RL. We explore
the cutting-edge research produced by Google Brain and implement the algorithms
introduced.

Chapter 18, Predicting Future Stock Prices, discusses building an agent that can predict stock
prices.

Chapter 19, Capstone Project – Car Racing Using DQN, provides a step-by-step approach for
building an agent to win a car racing game using dueling DQN.

Chapter 20, Looking Ahead, concludes the book by discussing some of the real-world
applications of reinforcement learning and introducing potential areas of future academic
work.

To get the most out of this book
The examples covered in this book can be run on Windows, Ubuntu, or macOS. All the
installation instructions are covered. A basic knowledge of Python and machine learning is
required. It's preferred that you have GPU hardware, but it's not necessary.

You need the following software for this book:

Anaconda
Python
Any web browser
Docker

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Reinforcement-Learning. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The gym-minecraft package has the same interface as other Gym
environments."

A block of code is set as follows:

import logging
import minecraft_py
logging.basicConfig(level=logging.DEBUG)

Any command-line input or output is written as follows:

python3 -m pip install gym
python3 -m pip install pygame

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/Python-Reinforcement-Learning
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Introduction to Reinforcement

Learning
Reinforcement learning (RL) is a branch of machine learning where the learning occurs via
interacting with an environment. It is goal-oriented learning where the learner is not taught
what actions to take; instead, the learner learns from the consequence of its actions. It is
growing rapidly with a wide variety of algorithms and it is one of the most active areas of
research in artificial intelligence (AI).

In this chapter, you will learn about the following:

Fundamental concepts of RL
RL algorithm
Agent environment interface
Types of RL environments
RL platforms
Applications of RL

What is RL?
Consider that you are teaching the dog to catch a ball, but you cannot teach the dog
explicitly to catch a ball; instead, you will just throw a ball, and every time the dog catches
the ball, you will give it a cookie. If it fails to catch the ball, you will not give a cookie. The
dog will figure out what actions made it receive a cookie and will repeat those actions.

Introduction to Reinforcement Learning Chapter 1

[8]

Similarly, in a RL environment, you will not teach the agent what to do or how to do
instead, you will give a reward to the agent for each action it does. The reward may be
positive or negative. Then the agent will start performing actions which made it receive a
positive reward. Thus, it is a trial and error process. In the previous analogy, the dog
represents the agent. Giving a cookie to the dog upon catching the ball is a positive reward,
and not giving a cookie is a negative reward.

There might be delayed rewards. You may not get a reward at each step. A reward may be
given only after the completion of a task. In some cases, you get a reward at each step to
find out that whether you are making any mistakes.

Imagine you want to teach a robot to walk without getting stuck by hitting a mountain, but
you will not explicitly teach the robot not to go in the direction of the mountain:

Instead, if the robot hits and get stuck on the mountain, you will take away ten points so
that robot will understand that hitting the mountain will result in a negative reward and it
will not go in that direction again:

Introduction to Reinforcement Learning Chapter 1

[9]

You will give 20 points to the robot when it walks in the right direction without getting
stuck. So the robot will understand which is the right path and will try to maximize the
rewards by going in the right direction:

The RL agent can explore different actions which might provide a good reward or it
can exploit (use) the previous action which resulted in a good reward. If the RL agent
explores different actions, there is a great possibility that the agent will receive a poor
reward as all actions are not going to be the best one. If the RL agent exploits only the
known best action, there is also a great possibility of missing out on the best action, which
might provide a better reward. There is always a trade-off between exploration and
exploitation. We cannot perform both exploration and exploitation at the same time. We
will discuss the exploration-exploitation dilemma in detail in the upcoming chapters.

RL algorithm
The steps involved in typical RL algorithm are as follows:

First, the agent interacts with the environment by performing an action1.
The agent performs an action and moves from one state to another2.
And then the agent will receive a reward based on the action it performed3.
Based on the reward, the agent will understand whether the action was good or4.
bad
If the action was good, that is, if the agent received a positive reward, then the5.
agent will prefer performing that action or else the agent will try performing an
other action which results in a positive reward. So it is basically a trial and error
learning process

Introduction to Reinforcement Learning Chapter 1

[10]

How RL differs from other ML paradigms
In supervised learning, the machine (agent) learns from training data which has a labeled
set of input and output. The objective is that the model extrapolates and generalizes its
learning so that it can be well applied to the unseen data. There is an external supervisor
who has a complete knowledge base of the environment and supervises the agent to
complete a task.

Consider the dog analogy we just discussed; in supervised learning, to teach the dog to
catch a ball, we will teach it explicitly by specifying turn left, go right, move forward five
steps, catch the ball, and so on. But instead in RL we just throw a ball, and every time the
dog catches the ball, we give it a cookie (reward). So the dog will learn to catch the ball that
meant it received a cookie.

In unsupervised learning, we provide the model with training data which only has a set of
inputs; the model learns to determine the hidden pattern in the input. There is a common
misunderstanding that RL is a kind of unsupervised learning but it is not. In unsupervised
learning, the model learns the hidden structure whereas in RL the model learns by
maximizing the rewards. Say we want to suggest new movies to the user. Unsupervised
learning analyses the similar movies the person has viewed and suggests movies, whereas
RL constantly receives feedback from the user, understands his movie preferences, and
builds a knowledge base on top of it and suggests a new movie.

There is also another kind of learning called semi-supervised learning which is basically a
combination of supervised and unsupervised learning. It involves function estimation on
both the labeled and unlabeled data, whereas RL is essentially an interaction between the
agent and its environment. Thus, RL is completely different from all other machine learning
paradigms.

Elements of RL
The elements of RL are shown in the following sections.

Agent
Agents are the software programs that make intelligent decisions and they are basically
learners in RL. Agents take action by interacting with the environment and they receive
rewards based on their actions, for example, Super Mario navigating in a video game.

Introduction to Reinforcement Learning Chapter 1

[11]

Policy function
A policy defines the agent's behavior in an environment. The way in which the agent
decides which action to perform depends on the policy. Say you want to reach your office
from home; there will be different routes to reach your office, and some routes are
shortcuts, while some routes are long. These routes are called policies because they
represent the way in which we choose to perform an action to reach our goal. A policy is
often denoted by the symbol 𝛑. A policy can be in the form of a lookup table or a complex
search process.

Value function
A value function denotes how good it is for an agent to be in a particular state. It is
dependent on the policy and is often denoted by v(s). It is equal to the total expected
reward received by the agent starting from the initial state. There can be several value
functions; the optimal value function is the one that has the highest value for all the states
compared to other value functions. Similarly, an optimal policy is the one that has the
optimal value function.

Model
Model is the agent's representation of an environment. The learning can be of two
types—model-based learning and model-free learning. In model-based learning, the agent
exploits previously learned information to accomplish a task, whereas in model-free
learning, the agent simply relies on a trial-and-error experience for performing the right
action. Say you want to reach your office from home faster. In model-based learning, you
simply use a previously learned experience (map) to reach the office faster, whereas in
model-free learning you will not use a previous experience and will try all different routes
and choose the faster one.

Introduction to Reinforcement Learning Chapter 1

[12]

Agent environment interface
Agents are the software agents that perform actions, At, at a time, t, to move from one
state, St, to another state St+1. Based on actions, agents receive a numerical reward, R, from
the environment. Ultimately, RL is all about finding the optimal actions that will increase
the numerical reward:

Let us understand the concept of RL with a maze game:

The objective of a maze is to reach the destination without getting stuck on the obstacles.
Here's the workflow:

The agent is the one who travels through the maze, which is our software
program/ RL algorithm
The environment is the maze

Introduction to Reinforcement Learning Chapter 1

[13]

The state is the position in a maze that the agent currently resides in
An agent performs an action by moving from one state to another
An agent receives a positive reward when its action doesn't get stuck on any
obstacle and receives a negative reward when its action gets stuck on obstacles so
it cannot reach the destination
The goal is to clear the maze and reach the destination

Types of RL environment
Everything agents interact with is called an environment. The environment is the outside
world. It comprises everything outside the agent. There are different types of environment,
which are described in the next sections.

Deterministic environment
An environment is said to be deterministic when we know the outcome based on the
current state. For instance, in a chess game, we know the exact outcome of moving any
player.

Stochastic environment
An environment is said to be stochastic when we cannot determine the outcome based on
the current state. There will be a greater level of uncertainty. For example, we never know
what number will show up when throwing a dice.

Fully observable environment
When an agent can determine the state of the system at all times, it is called fully
observable. For example, in a chess game, the state of the system, that is, the position of all
the players on the chess board, is available the whole time so the player can make an
optimal decision.

Introduction to Reinforcement Learning Chapter 1

[14]

Partially observable environment
When an agent cannot determine the state of the system at all times, it is called partially
observable. For example, in a poker game, we have no idea about the cards the opponent
has.

Discrete environment
When there is only a finite state of actions available for moving from one state to another, it
is called a discrete environment. For example, in a chess game, we have only a finite set of
moves.

Continuous environment
When there is an infinite state of actions available for moving from one state to another, it is
called a continuous environment. For example, we have multiple routes available for
traveling from the source to the destination.

Episodic and non-episodic environment
The episodic environment is also called the non-sequential environment. In an episodic
environment, an agent's current action will not affect a future action, whereas in a non-
episodic environment, an agent's current action will affect a future action and is also called
the sequential environment. That is, the agent performs the independent tasks in the
episodic environment, whereas in the non-episodic environment all agents' actions are
related.

Single and multi-agent environment
As the names suggest, a single-agent environment has only a single agent and the multi-
agent environment has multiple agents. Multi-agent environments are extensively used
while performing complex tasks. There will be different agents acting in completely
different environments. Agents in a different environment will communicate with each
other. A multi-agent environment will be mostly stochastic as it has a greater level of
uncertainty.

Introduction to Reinforcement Learning Chapter 1

[15]

RL platforms
RL platforms are used for simulating, building, rendering, and experimenting with our RL
algorithms in an environment. There are many different RL platforms available, as
described in the next sections.

OpenAI Gym and Universe
OpenAI Gym is a toolkit for building, evaluating, and comparing RL algorithms. It is
compatible with algorithms written in any framework like TensorFlow, Theano, Keras, and
so on. It is simple and easy to comprehend. It makes no assumption about the structure of
our agent and provides an interface to all RL tasks.

OpenAI Universe is an extension to OpenAI Gym. It provides an ability to train and
evaluate agents on a wide range of simple to real-time complex environments. It has
unlimited access to many gaming environments. Using Universe, any program can be
turned into a Gym environment without access to program internals, source code, or APIs
as Universe works by launching the program automatically behind a virtual network
computing remote desktop.

DeepMind Lab
DeepMind Lab is another amazing platform for AI agent-based research. It provides a rich
simulated environment that acts as a lab for running several RL algorithms. It is highly
customizable and extendable. The visuals are very rich, science fiction-style, and realistic.

RL-Glue
RL-Glue provides an interface for connecting agents, environments, and programs together
even if they are written in different programming languages. It has the ability to share your
agents and environments with others for building on top of your work. Because of this
compatibility, reusability is greatly increased.

Introduction to Reinforcement Learning Chapter 1

[16]

Project Malmo
Project Malmo is the another AI experimentation platform from Microsoft which builds on
top of Minecraft. It provides good flexibility for customizing the environment. It is
integrated with a sophisticated environment. It also allows overclocking, which enables
programmers to play out scenarios faster than in standard Minecraft. However, Malmo
currently only provides Minecraft gaming environments, unlike Open AI Universe.

ViZDoom
ViZDoom, as the name suggests, is a doom-based AI platform. It provides support for
multi-agents and a competitive environment to test the agent. However, ViZDoom only
supports the Doom game environment. It provides off-screen rendering and single and
multiplayer support.

Applications of RL
With greater advancements and research, RL has rapidly evolved everyday applications in
several fields ranging from playing computer games to automating a car. Some of the RL
applications are listed in the following sections.

Education
Many online education platforms are using RL for providing personalized content for each
and every student. Some students may learn better from video content, some may learn
better by doing projects, and some may learn better from notes. RL is used to tune
educational content personalized for each student according to their learning style and that
can be changed dynamically according to the behavior of the user.

Medicine and healthcare
RL has endless applications in medicine and health care; some of them include
personalized medical treatment, diagnosis based on a medical image, obtaining treatment
strategies in clinical decision making, medical image segmentation, and so on.

Introduction to Reinforcement Learning Chapter 1

[17]

Manufacturing
In manufacturing, intelligent robots are used to place objects in the right position. If it fails
or succeeds in placing the object at the right position, it remembers the object and trains
itself to do this with greater accuracy. The use of intelligent agents will reduce labor costs
and result in better performance.

Inventory management
RL is extensively used in inventory management, which is a crucial business activity. Some
of these activities include supply chain management, demand forecasting, and handling
several warehouse operations (such as placing products in warehouses for managing space
efficiently). Google researchers in DeepMind have developed RL algorithms for efficiently
reducing the energy consumption in their own data center.

Finance
RL is widely used in financial portfolio management, which is the process of constant
redistribution of a fund into different financial products and also in predicting and trading
in commercial transactions markets. JP Morgan has successfully used RL to provide better
trade execution results for large orders.

Natural Language Processing and Computer
Vision
With the unified power of deep learning and RL, Deep Reinforcement Learning (DRL) has
been greatly evolving in the fields of Natural Language Processing (NLP) and Computer
Vision (CV). DRL has been used for text summarization, information extraction, machine
translation, and image recognition, providing greater accuracy than current systems.

Introduction to Reinforcement Learning Chapter 1

[18]

Summary
In this chapter, we have learned the basics of RL and also some key concepts. We learned
different elements of RL and different types of RL environments. We also covered the
various available RL platforms and also the applications of RL in various domains.

In Chapter 2, Getting Started with OpenAI and TensorFlow, we will learn the basics of and
how to install OpenAI and TensorFlow, followed by simulating environments and teaching
the agents to learn in the environment.

Questions
The question list is as follows:

What is reinforcement learning?1.
How does RL differ from other ML paradigms?2.
What are agents and how do agents learn?3.
What is the difference between a policy function and a value function?4.
What is the difference between model-based and model-free learning?5.
What are all the different types of environments in RL?6.
How does OpenAI Universe differ from other RL platforms?7.
What are some of the applications of RL?8.

Further reading
Overview of RL: https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html.

https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html

2
Getting Started with OpenAI

and TensorFlow
OpenAI is a non-profit, open source artificial intelligence (AI) research company
founded by Elon Musk and Sam Altman that aims to build a general AI. They are
sponsored by top industry leaders and top-notch companies. OpenAI comes in two flavors,
Gym and Universe, using which we can simulate realistic environments, build
reinforcement learning (RL) algorithms, and test our agents in those environments.
TensorFlow is an open source machine learning library by Google that is extensively used
for numerical computation. We will use OpenAI and TensorFlow for building and
evaluating powerful RL algorithms in the upcoming chapters.

In this chapter, you will learn about the following:

Setting up your machine by installing Anaconda, Docker, OpenAI Gym, and
Universe and TensorFlow
Simulating an environment using OpenAI Gym and Universe
Training a robot to walk
Building a video game bot
Fundamentals of TensorFlow
Using TensorBoard

Setting up your machine
Installing OpenAI is not a straightforward task; there are a set of steps that have to be
correctly followed for setting the system up and running it. Now, let's see how to set up our
machine and install OpenAI Gym and Universe.

Getting Started with OpenAI and TensorFlow Chapter 2

[20]

Installing Anaconda
All the examples in the book use the Anaconda version of Python. Anaconda is an open
source distribution of Python. It is widely used for scientific computing and processing a
large volume of data. It provides an excellent package management environment. It
provides support for Windows, macOS, and Linux. Anaconda comes with Python installed
along with popular packages used for scientific computing such as NumPy, SciPy, and so
on.

To download Anaconda, visit https://www.anaconda.com/download/, where you will see
an option for downloading Anaconda for different platforms.

If you are using Windows or Mac, you can directly download the graphical installer
according to your machine architecture and install using the graphical installer.

If you are using Linux, follow these steps:

Open your Terminal and type the following to download Anaconda:1.

wget
https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh

Upon completion, we can install Anaconda via the following command:2.

bash Anaconda3-5.0.1-Linux-x86_64.sh

After successful installation of Anaconda, we need to create a new Anaconda environment
that is basically a virtual environment. What is the need for a virtual environment? Say you
are working on project A, which uses NumPy version 1.14, and project B, which uses
NumPy version 1.13. So, to work on project B you either downgrade NumPy or reinstall
Anaconda. In each project, we use different libraries with different versions which are not
applicable to other projects. Instead of downgrading or upgrading versions or reinstalling
Anaconda every time for a new project, we use a virtual environment. This creates an
isolated environment for the current project so that each project can have its own
dependencies and will not affect other projects. We will create such an environment using
the following command and name our environment universe:

conda create --name universe python=3.6 anaconda

We can activate our environment using the following command:

source activate universe

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/

Getting Started with OpenAI and TensorFlow Chapter 2

[21]

Installing Docker
After installing Anaconda, we need to install Docker. Docker makes it easy to deploy
applications to production. Say you built an application in your localhost that has
TensorFlow and some other libraries and you want to deploy your applications into a
server. You would need to install all those dependencies on the server. But with Docker, we
can pack our application with its dependencies, which is called a container, and we can
simply run our applications on the server without using any external dependency with our
packed Docker container. OpenAI has no support for Windows, so to install OpenAI in
Windows we need to use Docker. Also, the majority of OpenAI Universe's environment
needs Docker to simulate the environment. Now let's see how to install Docker.

To download Docker, go to https://docs.docker.com/ where you will see an option called
Get Docker; if you select that, you will see options for different operating systems. If you
are using either Windows or Mac, you can download Docker and install it directly using
the graphical installer.

If you are using Linux, follow these steps:

Open your Terminal and type the following:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Then type:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add
-

And then type:

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

Finally, type:

sudo apt-get update
sudo apt-get install docker-ce

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/

Getting Started with OpenAI and TensorFlow Chapter 2

[22]

We need to be a member of the Docker user group to start using Docker. You can join the
Docker user group via the following command:

sudo adduser $(whoami) docker
newgrp docker
groups

We can test the Docker installation by running the built-in hello-world program:

sudo service docker start
sudo docker run hello-world

In order to avoid using sudo to use Docker every time, we can use the following command:

sudo groupadd docker
sudo usermod -aG docker $USER
sudo reboot

Installing OpenAI Gym and Universe
Now let's see how to install OpenAI Gym and Universe. Before that, we need to install
several dependencies. First, let's activate the conda environment we just created using the
following command:

source activate universe

Then we will install the following dependencies:

sudo apt-get update
sudo apt-get install golang libcupti-dev libjpeg-turbo8-dev make tmux htop
chromium-browser git cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev
python-opengl libboost-all-dev libsdl2-dev swig

conda install pip six libgcc swig
conda install opencv

Throughout this book, we will be using gym version 0.7.0 so you can install gym directly
using pip as:

pip install gym==0.7.0

Getting Started with OpenAI and TensorFlow Chapter 2

[23]

Or you can clone the gym repository and install the latest version by following command:

cd ~
git clone https://github.com/openai/gym.git
cd gym
pip install -e '.[all]'

The preceding commands will fetch the gym repository and install gym as a package, as
shown in the following screenshot:

Common error fixes
There is a good chance that you will encounter any of the following errors while installing
gym. If you get these errors, just run the following commands and try reinstalling:

Failed building wheel for pachi-py or Failed building wheel
for pachi-py atari-py:

sudo apt-get update
sudo apt-get install xvfb libav-tools xorg-dev libsdl2-dev swig
cmake

Failed building wheel for mujoco-py:

git clone https://github.com/openai/mujoco-py.git
cd mujoco-py
sudo apt-get update
sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev
python3-pip python3-numpy python3-scipy
pip3 install -r requirements.txt
sudo python3 setup.py install

Error: command 'gcc' failed with exit status 1:

sudo apt-get update
sudo apt-get install python-dev
sudo apt-get install libevent-dev

Getting Started with OpenAI and TensorFlow Chapter 2

[24]

Similarly, we can install OpenAI Universe by fetching the universe repository and
installing the universe as a package:

cd ~
git clone https://github.com/openai/universe.git
cd universe
pip install -e .

The installation is shown in the following screenshot:

As already said, Open AI Universe needs Docker, as the majority of Universe environments
run inside a Docker container.

So let's build a Docker image and name it universe:

docker build -t universe .

Once the Docker image is built, we run the following command, which starts a container
from the Docker image:

docker run --privileged --rm -it -p 12345:12345 -p 5900:5900 -e
DOCKER_NET_HOST=172.17.0.1 universe /bin/bash

OpenAI Gym
With OpenAI Gym, we can simulate a variety of environments and develop, evaluate, and
compare RL algorithms. Let's now understand how to use Gym.

Getting Started with OpenAI and TensorFlow Chapter 2

[25]

Basic simulations
Let's see how to simulate a basic cart pole environment:

First, let's import the library:1.

import gym

The next step is to create a simulation instance using the make function:2.

env = gym.make('CartPole-v0')

Then we should initialize the environment using the reset method:3.

env.reset()

Then we can loop for some time steps and render the environment at each step:4.

for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

The complete code is as follows:

import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

If you run the preceding program, you can see the output, which shows the cart pole
environment:

Getting Started with OpenAI and TensorFlow Chapter 2

[26]

OpenAI Gym provides a lot of simulation environments for training, evaluating, and
building our agents. We can check the available environments by either checking their
website or simply typing the following, which will list the available environments:

from gym import envs
print(envs.registry.all())

Since Gym provides different interesting environments, let's simulate a car racing
environment, shown as follows:

import gym
env = gym.make('CarRacing-v0')
env.reset()
for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

You will get the output as follows:

Getting Started with OpenAI and TensorFlow Chapter 2

[27]

Training a robot to walk
Now let's learn how to train a robot to walk using Gym along with some fundamentals.

The strategy is that X points will be given as a reward when the robot moves forward, and
if the robot fails to move then Y points will be reduced. So the robot will learn to walk in
the event of maximizing the reward.

First, we will import the library, then we will create a simulation instance by the make
function. Open AI Gym provides an environment called BipedalWalker-v2 for training
robotic agents in a simple terrain:

import gym
env = gym.make('BipedalWalker-v2')

Then, for each episode (agent-environment interaction between the initial and final state),
we will initialize the environment using the reset method:

for episode in range(100):
 observation = env.reset()

Then we will loop and render the environment:

for i in range(10000):
 env.render()

We sample random actions from the environment's action space. Every environment has an
action space which contains all possible valid actions:

action = env.action_space.sample()

For each action step, we will record observation, reward, done, and info:

observation, reward, done, info = env.step(action)

observation is the object representing an observation of the environment. For example,
the state of the robot in the terrain.

reward are the rewards gained by the previous action. For example, the reward gained by
a robot on successfully moving forward.

done is the Boolean; when it is true, it indicates that the episode has completed (that is, the
robot learned to walk or failed completely). Once the episode has completed, we can
initialize the environment for the next episode using env.reset().

info is the information that is useful for debugging.

Getting Started with OpenAI and TensorFlow Chapter 2

[28]

When done is true, we print the time steps taken for the episode and break the current
episode:

if done:
 print("{} timesteps taken for the Episode".format(i+1))
 break

The complete code is as follows:

import gym
env = gym.make('BipedalWalker-v2')
for i_episode in range(100):
 observation = env.reset()
 for t in range(10000):
 env.render()
 print(observation)
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)
 if done:
 print("{} timesteps taken for the episode".format(t+1))
 break

The output is shown in the following screenshot:

Getting Started with OpenAI and TensorFlow Chapter 2

[29]

OpenAI Universe
OpenAI Universe provides a wide range of realistic gaming environments. It is an
extension to OpenAI Gym. It provides the ability to train and evaluate agents on a wide
range of simple to real-time complex environments. It has unlimited access to many gaming
environments.

Building a video game bot
Let's learn how to build a video game bot which plays a car racing game. Our objective is
that the car has to move forward without getting stuck on any obstacles or hitting other
cars.

First, we import the necessary libraries:

import gym
import universe # register universe environment
import random

Then we simulate our car racing environment using the make function:

env = gym.make('flashgames.NeonRace-v0')
env.configure(remotes=1) #automatically creates a local docker container

Let's create the variables for moving the car:

Move left
left = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', True),
 ('KeyEvent', 'ArrowRight', False)]

#Move right
right = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', False),
 ('KeyEvent', 'ArrowRight', True)]

Move forward
forward = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowRight',
False),
 ('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'n', True)]

Getting Started with OpenAI and TensorFlow Chapter 2

[30]

We will initialize some other variables:

We use turn variable for deciding whether to turn or not
turn = 0

We store all the rewards in rewards list
rewards = []

#we will use buffer as some threshold
buffer_size = 100

#we will initially set action as forward, which just move the car forward
#without any turn
action = forward

Now, let's allow our game agent to play in an infinite loop that continuously performs an
action based on interaction with the environment:

while True:
 turn -= 1
Let us say initially we take no turn and move forward.
We will check value of turn, if it is less than 0
then there is no necessity for turning and we just move forward.
 if turn <= 0:
 action = forward
 turn = 0

Then we use env.step() to perform an action (moving forward for now) for a one-time
step:

 action_n = [action for ob in observation_n]
 observation_n, reward_n, done_n, info = env.step(action_n)

For each time step, we record the results in the observation_n, reward_n, done_n,
and info variables:

observation _n: State of the car
reward_n: Reward gained by the previous action, if the car successfully moves
forward without getting stuck on obstacles
done_n: It is a Boolean; it will be set to true if the game is over
info_n: Used for debugging purposes

Getting Started with OpenAI and TensorFlow Chapter 2

[31]

Obviously, an agent (car) cannot move forward throughout the game; it needs to take a
turn, avoid obstacles, and will also hit other vehicles. But it has to determine whether it
should take a turn and, if yes, then in which direction it should turn.

First, we will calculate the mean of the rewards we obtained so far; if it is 0 then it is clear
that we got stuck somewhere while moving forward and we need to take a turn. Then
again, which direction do we need to turn? Do you recollect the policy functions we
studied in Chapter 1, Introduction to Reinforcement Learning.

Referring to the same concept, we have two policies here: one is turning left and the other is
turning right. We will take a random policy here and calculate a reward and improve upon
that.

We will generate a random number and if it is less than 0.5, then we will take a right,
otherwise we will take a left. Later, we will update our rewards and, based on our rewards,
we will learn which direction is best:

if len(rewards) >= buffer_size:
 mean = sum(rewards)/len(rewards)

 if mean == 0:
 turn = 20
 if random.random() < 0.5:
 action = right
 else:
 action = left
 rewards = []

Then, for each episode (say the game is over), we reinitialize the environment (start the
game from the beginning) using the env.render():

 env.render()

The complete code is as follows:

import gym
import universe # register universe environment
import random

env = gym.make('flashgames.NeonRace-v0')
env.configure(remotes=1) # automatically creates a local docker container
observation_n = env.reset()

##Declare actions
#Move left
left = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', True),

Getting Started with OpenAI and TensorFlow Chapter 2

[32]

 ('KeyEvent', 'ArrowRight', False)]

#move right
right = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', False),
 ('KeyEvent', 'ArrowRight', True)]

Move forward
forward = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowRight',
False),
 ('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'n', True)]

#Determine whether to turn or not
turn = 0
#store rewards in a list
rewards = []
#use buffer as a threshold
buffer_size = 100
#initial action as forward
action = forward

while True:
 turn -= 1
 if turn <= 0:
 action = forward
 turn = 0
 action_n = [action for ob in observation_n]
 observation_n, reward_n, done_n, info = env.step(action_n)
 rewards += [reward_n[0]]
 if len(rewards) >= buffer_size:
 mean = sum(rewards)/len(rewards)

 if mean == 0:
 turn = 20
 if random.random() < 0.5:
 action = right
 else:
 action = left
 rewards = []

 env.render()

Getting Started with OpenAI and TensorFlow Chapter 2

[33]

If you run the program, you can see how the car learns to move without getting stuck or
hitting other vehicles:

TensorFlow
TensorFlow is an open source software library from Google which is extensively used for
numerical computation. It is widely used for building deep learning models and is a subset
of machine learning. It uses data flow graphs that can be shared and executed on many
different platforms. Tensor is nothing but a multi-dimensional array, so when we say
TensorFlow, it is literally a flow of multi-dimensional arrays (tensors) in the computation
graph.

With Anaconda installed, installing TensorFlow becomes very simple. Irrespective of the
platform you are using, you can easily install TensorFlow by typing the following
command:

source activate universe
conda install -c conda-forge tensorflow

Getting Started with OpenAI and TensorFlow Chapter 2

[34]

Don't forget to activate the universe environment before installing
TensorFlow.

We can check whether the TensorFlow installation was successful by simply running the
following Hello World program:

import tensorflow as tf
hello = tf.constant("Hello World")
sess = tf.Session()
print(sess.run(hello))

Variables, constants, and placeholders
Variables, constants, and placeholders are the fundamental elements of TensorFlow.
However, there is always confusion between these three. Let's look at each element one by
one and learn the difference between them.

Variables
Variables are the containers used to store values. Variables will be used as input to several
other operations in the computational graph. We can create TensorFlow variables using
the tf.Variable() function. In the following example, we define a variable with values
from a random normal distribution and name it weights:

weights = tf.Variable(tf.random_normal([3, 2], stddev=0.1), name="weights")

However, after defining a variable, we need to explicitly create an initialization operation
using the tf.global_variables_initializer() method which will allocate resources
for the variable.

Constants
Constants, unlike variables, cannot have their values changed. Constants are immutable;
once they are assigned values they cannot be changed throughout. We can create constants
using the tf.constant() function:

x = tf.constant(13)

Getting Started with OpenAI and TensorFlow Chapter 2

[35]

Placeholders
Think of placeholders as variables where you only define the type and dimension but will
not assign the value. Placeholders are defined with no values. Values for the placeholders
will be fed at runtime. Placeholders have an optional argument called shape, which
specifies the dimensions of the data. If the shape is set to None then we can feed data of
any size at runtime. Placeholders can be defined using the tf.placeholder() function:

x = tf.placeholder("float", shape=None)

To put it in simple terms, we use tf.Variable to store the data and tf.placeholder for
feeding the external data.

Computation graph
Everything in TensorFlow will be represented as a computational graph that consists of
nodes and edges, where nodes are the mathematical operations, say addition,
multiplication and so on, and edges are the tensors. Having a computational graph is very
efficient in optimizing resources and it also promotes distributed computing.

Say we have node B, whose input is dependent on the output of node A; this type of
dependency is called direct dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(A,1)

When node B doesn't depend on node A for its input it is called indirect dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(4,3)

So if we can understand these dependencies, we can distribute the independent
computations in the available resources and reduce the computation time.

Whenever we import TensorFlow, a default graph will be created automatically and all
nodes we create will get associated with the default graph.

Getting Started with OpenAI and TensorFlow Chapter 2

[36]

Sessions
Computation graphs will only be defined; in order to execute the computation graph, we
use TensorFlow sessions:

sess = tf.Session()

We can create the session for our computation graph using the tf.Session() method,
which will allocate the memory for storing the current value of the variable. After creating
the session, we can execute our graph with the sess.run() method.

In order to run anything in TensorFlow, we need to start the TensorFlow session for an
instance; please refer to the code:

import tensorflow as tf
a = tf.multiply(2,3)
print(a)

It will print a TensorFlow object instead of 6. As already said, whenever we import
TensorFlow a default computation graph will automatically be created and all nodes a that
we created will get attached to the graph. In order to execute the graph, we need to
initialize a TensorFlow session as follows:

#Import tensorflow
import tensorflow as tf

#Initialize variables
a = tf.multiply(2,3)

#create tensorflow session for executing the session
with tf.Session() as sess:
 #run the session
 print(sess.run(a))

The preceding code will print 6.

Getting Started with OpenAI and TensorFlow Chapter 2

[37]

TensorBoard
TensorBoard is TensorFlow's visualization tool that can be used to visualize the
computational graph. It can also be used to plot various quantitative metrics and the results
of several intermediate calculations. Using TensorBoard, we can easily visualize complex
models, which will be useful for debugging and also sharing.

Now, let's build a basic computation graph and visualize that in TensorBoard.

First, let's import the library:

import tensorflow as tf

Next, we initialize the variables:

a = tf.constant(5)
b = tf.constant(4)
c = tf.multiply(a,b)
d = tf.constant(2)
e = tf.constant(3)
f = tf.multiply(d,e)
g = tf.add(c,f)

Now, we will create a TensorFlow session. We will write the results of our graph to a file
called event using tf.summary.FileWriter():

with tf.Session() as sess:
 writer = tf.summary.FileWriter("output", sess.graph)
 print(sess.run(g))
 writer.close()

In order to run the TensorBoard, go to your Terminal, locate the working directory, and
type tensorboard --logdir=output --port=6003.

Getting Started with OpenAI and TensorFlow Chapter 2

[38]

You can see the output as shown next:

Adding scope
Scoping is used to reduce complexity and helps us to better understand the model by
grouping the related nodes together. For instance, in the previous example, we can break
down our graph into two different groups called computation and result. If you look at the
previous example, you can see that nodes a to e perform the computation and node g
calculates the result. So we can group them separately using the scope for easy
understanding. Scoping can be created using the tf.name_scope() function.

Let's use the tf.name_scope() function using Computation:

with tf.name_scope("Computation"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

Getting Started with OpenAI and TensorFlow Chapter 2

[39]

Let's use the tf.name_scope() function using Result:

with tf.name_scope("Result"):
 g = tf.add(c,f)

Look at the Computation scope; we can further break down into separate parts for even
more understanding. We can create a scope as Part 1, which has nodes a to c, and a scope
as Part 2, which has nodes d to e, as part 1 and 2 are independent of each other:

with tf.name_scope("Computation"):
 with tf.name_scope("Part1"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 with tf.name_scope("Part2"):
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

Scoping can be better understood by visualizing them in the TensorBoard. The complete
code is as follows:

import tensorflow as tf
with tf.name_scope("Computation"):
 with tf.name_scope("Part1"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 with tf.name_scope("Part2"):
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

with tf.name_scope("Result"):
 g = tf.add(c,f)

with tf.Session() as sess:
 writer = tf.summary.FileWriter("output", sess.graph)
 print(sess.run(g))
 writer.close()

Getting Started with OpenAI and TensorFlow Chapter 2

[40]

If you look at the following diagram, you can easily understand how scope helps us to
reduce complexity in understanding by grouping the similar nodes together. Scoping is
widely used while working on a complex project to better understand the functionality and
dependencies of nodes:

Summary
In this chapter, we learned how to set up our machine by installing Anaconda, Docker,
OpenAI Gym, Universe, and TensorFlow. We also learned how to create simulations using
OpenAI and how to train agents to learn in an OpenAI environment. Then we came across
the fundamentals of TensorFlow followed by visualizing graphs in TensorBoard.

In the Chapter 3, The Markov Decision Process and Dynamic Programming we will learn about
Markov Decision Process and dynamic programming and how to solve frozen lake
problem using value and policy iteration.

Getting Started with OpenAI and TensorFlow Chapter 2

[41]

Questions
The question list is as follows:

Why and how do we create a new environment in Anaconda?1.
What is the need for using Docker?2.
How do we simulate an environment in OpenAI Gym?3.
How do we check all available environments in OpenAI Gym?4.
Are OpenAI Gym and Universe the same? If not, what is the reason?5.
How are TensorFlow variables and placeholders different from each other?6.
What is a computational graph?7.
Why do we need sessions in TensorFlow?8.
What is the purpose of TensorBoard and how do we start it?9.

Further reading
You can further refer to these papers:

OpenAI blog: https://blog.openai.com

OpenAI environments: https://gym.openai.com/envs/

TensorFlow official website: https://www.tensorflow.org/

https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

3
The Markov Decision Process

and Dynamic Programming
The Markov Decision Process (MDP) provides a mathematical framework for solving the
reinforcement learning (RL) problem. Almost all RL problems can be modeled as MDP.
MDP is widely used for solving various optimization problems. In this chapter, we will
understand what MDP is and how can we use it to solve RL problems. We will also learn
about dynamic programming, which is a technique for solving complex problems in an
efficient way.

In this chapter, you will learn about the following topics:

The Markov chain and Markov process
The Markov Decision Process
Rewards and returns
The Bellman equation
Solving a Bellman equation using dynamic programming
Solving a frozen lake problem using value and policy iteration

The Markov chain and Markov process
Before going into MDP, let us understand the Markov chain and Markov process, which
form the foundation of MDP.

The Markov property states that the future depends only on the present and not on the
past. The Markov chain is a probabilistic model that solely depends on the current state to
predict the next state and not the previous states, that is, the future is conditionally
independent of the past. The Markov chain strictly follows the Markov property.

The Markov Decision Process and Dynamic Programming Chapter 3

[43]

For example, if we know that the current state is cloudy, we can predict that next state
could be rainy. We came to this conclusion that the next state could be rainy only by
considering the current state (cloudy) and not the past states, which might be sunny,
windy, and so on. However, the Markov property does not hold true for all processes. For
example, throwing a dice (the next state) has no dependency on the previous number,
whatever showed up on the dice (the current state).

Moving from one state to another is called transition and its probability is called
a transition probability. We can formulate the transition probabilities in the form of a table,
as shown next, and it is called a Markov table. It shows, given the current state, what the
probability of moving to the next state is:

Current state Next state Transition probability
Cloudy Rainy 0.6
Rainy Rainy 0.2
Sunny Cloudy 0.1
Rainy Sunny 0.1

We can also represent the Markov chain in the form a state diagram that shows the
transition probability:

The preceding state diagram shows the probability of moving from one state to another.
Still don't understand the Markov chain? Okay, let us talk.

Me: "What are you doing?"

You: "I'm reading about the Markov chain."

Me: "What is your plan after reading?"

You: "I'm going to sleep."

Me: "Are you sure you're going to sleep?"

The Markov Decision Process and Dynamic Programming Chapter 3

[44]

You: "Probably. I'll watch TV if I'm not sleepy."

Me: "Cool; this is also a Markov chain."

You: "Eh?"

We can formulate our conversation into a Markov chain and draw a state diagram as
follows:

The Markov chain lies in the core concept that the future depends only on the present and
not on the past. A stochastic process is called a Markov process if it follows the Markov
property.

Markov Decision Process
MDP is an extension of the Markov chain. It provides a mathematical framework for
modeling decision-making situations. Almost all Reinforcement Learning problems can be
modeled as MDP.

MDP is represented by five important elements:

A set of states the agent can actually be in.

A set of actions that can be performed by an agent, for moving from one state
to another.
A transition probability (), which is the probability of moving from one state

 to another state by performing some action .
A reward probability (), which is the probability of a reward acquired by the
agent for moving from one state to another state by performing some action

.
A discount factor (), which controls the importance of immediate and future
rewards. We will discuss this in detail in the upcoming sections.

The Markov Decision Process and Dynamic Programming Chapter 3

[45]

Rewards and returns
As we have learned, in an RL environment, an agent interacts with the environment by
performing an action and moves from one state to another. Based on the action it performs,
it receives a reward. A reward is nothing but a numerical value, say, +1 for a good action
and -1 for a bad action. How do we decide if an action is good or bad? In a maze game, a
good action is where the agent makes a move so that it doesn't hit a maze wall, whereas a
bad action is where the agent moves and hits the maze wall.

An agent tries to maximize the total amount of rewards (cumulative rewards) it receives
from the environment instead of immediate rewards. The total amount of rewards the
agent receives from the environment is called returns. So, we can formulate total amount of
rewards (returns) received by the agents as follows:

 is the reward received by the agent at a time step while performing an action
to move from one state to another. is the reward received by the agent at a time

step while performing an action to move from one state to another. Similarly, is the
reward received by the agent at a final time step while performing an action to move
from one state to another.

Episodic and continuous tasks
Episodic tasks are the tasks that have a terminal state (end). In RL, episodes are considered
agent-environment interactions from initial to final states.

For example, in a car racing video game, you start the game (initial state) and play the game
until it is over (final state). This is called an episode. Once the game is over, you start the
next episode by restarting the game, and you will begin from the initial state irrespective of
the position you were in the previous game. So, each episode is independent of the other.

In a continuous task, there is not a terminal state. Continuous tasks will never end. For
example, a personal assistance robot does not have a terminal state.

Discount factor
We have seen that an agent goal is to maximize the return. For an episodic task, we can
define our return as Rt= rt+1 + rt+2 + +rT, where T is the final state of the episode, and we try
to maximize the return Rt.

The Markov Decision Process and Dynamic Programming Chapter 3

[46]

Since we don't have any final state for a continuous task, we can define our return for
continuous tasks as Rt= rt+1 + rt+2+....,which sums up to infinity. But how can we maximize the
return if it never stops?

That's why we introduce the notion of a discount factor. We can redefine our return with a
discount factor , as follows:

 ---(1)

 ---(2)

The discount factor decides how much importance we give to the future rewards and
immediate rewards. The value of the discount factor lies within 0 to 1. A discount factor of
0 means that immediate rewards are more important, while a discount factor of 1 would
mean that future rewards are more important than immediate rewards.

A discount factor of 0 will never learn considering only the immediate rewards; similarly, a
discount factor of 1 will learn forever looking for the future reward, which may lead to
infinity. So the optimal value of the discount factor lies between 0.2 to 0.8.

We give importance to immediate rewards and future rewards depending on the use case.
In some cases, future rewards are more desirable than immediate rewards and vice versa.
In a chess game, the goal is to defeat the opponent's king. If we give importance to the
immediate reward, which is acquired by actions like our pawn defeating any opponent
player and so on, the agent will learn to perform this sub-goal instead of learning to reach
the actual goal. So, in this case, we give importance to future rewards, whereas in some
cases, we prefer immediate rewards over future rewards. (Say, would you prefer chocolates
if I gave you them today or 13 months later?)

The policy function
We have learned about the policy function in Chapter 1, Introduction to Reinforcement
Learning, which maps the states to actions. It is denoted by π.

The policy function can be represented as , indicating mapping from states to
actions. So, basically, a policy function says what action to perform in each state. Our
ultimate goal lies in finding the optimal policy which specifies the correct action to perform
in each state, which maximizes the reward.

The Markov Decision Process and Dynamic Programming Chapter 3

[47]

State value function
A state value function is also called simply a value function. It specifies how good it is for
an agent to be in a particular state with a policy π. A value function is often denoted by
V(s). It denotes the value of a state following a policy.

We can define a state value function as follows:

This specifies the expected return starting from state s according to policy π. We can
substitute the value of Rt in the value function from (2) as follows:

Note that the state value function depends on the policy and it varies depending on the
policy we choose.

We can view value functions in a table. Let us say we have two states and both of these
states follow the policy π. Based on the value of these two states, we can tell how good it is
for our agent to be in that state following a policy. The greater the value, the better the state
is:

State Value
State 1 0.3
State 2 0.9

Based on the preceding table, we can tell that it is good to be in state 2, as it has high value.
We will see how to estimate these values intuitively in the upcoming sections.

State-action value function (Q function)
 A state-action value function is also called the Q function. It specifies how good it is for an
agent to perform a particular action in a state with a policy π. The Q function is denoted by
Q(s, a). It denotes the value of taking an action in a state following a policy π.

We can define Q function as follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[48]

This specifies the expected return starting from state s with the action a according to
policy π. We can substitute the value of Rt in the Q function from (2) as follows:

The difference between the value function and the Q function is that the value function
specifies the goodness of a state, while a Q function specifies the goodness of an action in a
state.

Like state value functions, Q functions can be viewed in a table. It is also called a Q table.
Let us say we have two states and two actions; our Q table looks like the following:

State Action Value
State 1 Action 1 0.03
State 1 Action 2 0.02
State 2 Action 1 0.5
State 2 Action 2 0.9

Thus, the Q table shows the value of all possible state action pairs. So, by looking at this
table, we can come to the conclusion that performing action 1 in state 1 and action 2 in state
2 is the better option as it has high value.

Whenever we say value function V(S) or Q function Q(S, a), it actually means the value
table and Q table, as shown previously.

The Bellman equation and optimality
The Bellman equation, named after Richard Bellman, American mathematician, helps us to
solve MDP. It is omnipresent in RL. When we say solve the MDP, it actually means finding
the optimal policies and value functions. There can be many different value functions
according to different policies. The optimal value function is the one which yields
maximum value compared to all the other value functions:

Similarly, the optimal policy is the one which results in an optimal value function.

The Markov Decision Process and Dynamic Programming Chapter 3

[49]

Since the optimal value function is the one that has a higher value compared to all
other value functions (that is, maximum return), it will be the maximum of the Q function.
So, the optimal value function can easily be computed by taking the maximum of the Q
function as follows:

 -- (3)

The Bellman equation for the value function can be represented as, (we will see how we
derived this equation in the next topic):

It indicates the recursive relation between a value of a state and its successor state and the
average over all possibilities.

Similarly, the Bellman equation for the Q function can be represented as follows:

 --- (4)

Substituting equation (4) in (3), we get:

The preceding equation is called a Bellman optimality equation. In the upcoming sections,
we will see how to find optimal policies by solving this equation.

Deriving the Bellman equation for value and Q
functions
Now let us see how to derive Bellman equations for value and Q functions.

You can skip this section if you are not interested in mathematics; however, the math will
be super intriguing.

First, we define, as a transition probability of moving from state to while
performing an action a:

The Markov Decision Process and Dynamic Programming Chapter 3

[50]

We define as a reward probability received by moving from state to while
performing an action a:

 from (2) ---(5)

We know that the value function can be represented as:

 from (1)

We can rewrite our value function by taking the first reward out:

 ---(6)

The expectations in the value function specifies the expected return if we are in the state s,
performing an action a with policy π.

So, we can rewrite our expectation explicitly by summing up all possible actions and
rewards as follows:

In the RHS, we will substitute from equation (5) as follows:

Similarly, in the LHS, we will substitute the value of rt+1 from equation (2) as follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[51]

So, our final expectation equation becomes:

 ---(7)

Now we will substitute our expectation (7) in value function (6) as follows:

Instead of , we can substitute with equation (6), and our
final value function looks like the following:

In very similar fashion, we can derive a Bellman equation for the Q function; the final
equation is as follows:

Now that we have a Bellman equation for both the value and Q function, we will see how
to find the optimal policies.

Solving the Bellman equation
We can find the optimal policies by solving the Bellman optimality equation. To solve the
Bellman optimality equation, we use a special technique called dynamic programming.

Dynamic programming
Dynamic programming (DP) is a technique for solving complex problems. In DP, instead
of solving complex problems one at a time, we break the problem into simple sub-
problems, then for each sub-problem, we compute and store the solution. If the same sub-
problem occurs, we will not recompute, instead, we use the already computed solution.
Thus, DP helps in drastically minimizing the computation time. It has its applications in a
wide variety of fields including computer science, mathematics, bioinformatics, and so on.

The Markov Decision Process and Dynamic Programming Chapter 3

[52]

We solve a Bellman equation using two powerful algorithms:

Value iteration
Policy iteration

Value iteration
In value iteration, we start off with a random value function. Obviously, the random value
function might not be an optimal one, so we look for a new improved value function in
iterative fashion until we find the optimal value function. Once we find the optimal value
function, we can easily derive an optimal policy from it:

The Markov Decision Process and Dynamic Programming Chapter 3

[53]

The steps involved in the value iteration are as follows:

First, we initialize the random value function, that is, the random value for each1.
state.
Then we compute the Q function for all state action pairs of Q(s, a).2.
Then we update our value function with the max value from Q(s,a).3.
We repeat these steps until the change in the value function is very small.4.

Let us understand it intuitively by performing value iteration manually, step by step.

Consider the grid shown here. Let us say we are in state A and our goal is to reach state C
without visiting state B, and we have two actions, 0—left/right and 1—up/down:

Can you think of what will be the optimal policy here? The optimal policy here will be the
one that tells us to perform action 1 in the state A so that we can reach C without visiting B.
How can we find this optimal policy? Let us see that now:

 Initialize the random value function, that is, a random values for all the states. Let us
assign 0 to all the states:

Let's calculate the Q value for all state action pairs.

The Q value tells us the value of an action in each state. First, let us compute the Q value for
state A. Recall the equation of the Q function. For calculating, we need transition and
reward probabilities. Let us consider the transition and reward probability for state A as
follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[54]

The Q function for the state A can be calculated as follows:

Q(s,a) = Transition probability * (Reward probability + gamma * value_of_next_state)

Here, gamma is the discount factor; we will consider it as 1.

Q value for state A and action 0:

Q(A,0) = (0.1 * (0+0)) + (0.4 * (-1.0+0)) + (0.3 * (1.0+0))

Q(A,0) = -0.1

Now we will compute the Q value for state A and action 1:

Q(A,1) = (0.3 * (0+0)) + (0.1 * (-2.0 + 0)) + (0.5 * (1.0 + 0))

Q(A,1) = 0.3

Now we will update this in the Q table as follows:

Update the value function as the max value from Q(s,a).

If you look at the preceding Q function, Q(A,1) has a higher value than Q(A,0) so we will
update the value of state A as Q(A,1):

Similarly, we compute the Q value for all state-action pairs and update the value function
of each state by taking the Q value that has the highest state action value. Our updated
value function looks like the following. This is the result of the first iteration:

The Markov Decision Process and Dynamic Programming Chapter 3

[55]

We repeat this steps for several iterations. That is, we repeat step 2 to step 3 (in each
iteration while calculating the Q value, we use the updated value function instead of the
same randomly initialized value function).

This is the result of the second iteration:

This is the result of the third iteration:

But when do we stop this? We will stop when the change in the value between each
iteration is small; if you look at iteration two and three, there is not much of a change in the
value function. Given this condition, we stop iterating and consider it an optimal value
function.

Okay, now that we have found the optimal value function, how can we derive the optimal
policy?

It is very simple. We compute the Q function with our final optimal value function. Let us
say our computed Q function looks like the following:

From this Q function, we pick up actions in each state that have maximal value. At state A,
we have a maximum value for action 1, which is our optimal policy. So if we perform
action 1 in state A we can reach C without visiting B.

Policy iteration
Unlike value iteration, in policy iteration we start with the random policy, then we find the
value function of that policy; if the value function is not optimal then we find the new
improved policy. We repeat this process until we find the optimal policy.

The Markov Decision Process and Dynamic Programming Chapter 3

[56]

There are two steps in policy iteration:

Policy evaluation: Evaluating the value function of a randomly estimated policy.1.
Policy improvement: Upon evaluating the value function, if it is not optimal, we2.
find a new improved policy:

The Markov Decision Process and Dynamic Programming Chapter 3

[57]

The steps involved in the policy iteration are as follows:

First, we initialize some random policy1.
Then we find the value function for that random policy and evaluate to check if it2.
is optimal which is called policy evaluation
If it is not optimal, we find a new improved policy, which is called policy3.
improvement
We repeat these steps until we find an optimal policy4.

Let us understand intuitively by performing policy iteration manually step by step.

Consider the same grid example we saw in the section Value iteration. Our goal is to find the
optimal policy:

Initialize a random policy function.1.

Let us initialize a random policy function by specifying random actions to each
state:

say A -> 0

 B -> 1

 C -> 0

Find the value function for the randomly initialized policy.2.

Now we have to find the value function using our randomly initialized policy. Let
us say our value function after computation looks like the following:

Now that we have a new value function according to our randomly initialized policy, let us
compute a new policy using our new value function. How do we do this? It is very similar
to what we did in Value iteration. We calculate Q value for our new value function and then
take actions for each state which has a maximum value as the new policy.

The Markov Decision Process and Dynamic Programming Chapter 3

[58]

Let us say the new policy results in:

A - > 0

B - > 1

C -> 1

We check our old policy, that is, the randomly initialized policy, and the new policy. If they
are same, then we have attained the convergence, that is, found the optimal policy. If not,
we will update our old policy (random policy) as a new policy and repeat from step 2.

Sound confusing? Look at the pseudo code:

policy_iteration():
 Initialize random policy
 for i in no_of_iterations:
 Q_value = value_function(random_policy)
 new_policy = Maximum state action pair from Q value
 if random_policy == new policy:
 break
 random_policy = new_policy
 return policy

Solving the frozen lake problem
If you haven't understood anything we have learned so far, don't worry, we will look at all
the concepts along with a frozen lake problem.

Imagine there is a frozen lake stretching from your home to your office; you have to walk
on the frozen lake to reach your office. But oops! There are holes in the frozen lake so you
have to be careful while walking on the frozen lake to avoid getting trapped in the holes:

The Markov Decision Process and Dynamic Programming Chapter 3

[59]

Look at the preceding diagram:

S is the starting position (home)
F is the frozen lake where you can walk
H are the holes, which you have to be so careful about
G is the goal (office)

Okay, now let us use our agent instead of you to find the correct way to reach the office.
The agent's goal is to find the optimal path to go from S to G without getting trapped at H.
How can an agent achieve this? We give +1 point as a reward to the agent if it correctly
walks on the frozen lake and 0 points if it falls into a hole, so the agent can determine which
is the right action. An agent will now try to find the optimal policy. Optimal policy implies
taking the correct path, which maximizes the agent's reward. If the agent is maximizing the
reward, apparently the agent is learning to skip the holes and reach the destination.

We can model our problem into MDP, which we studied earlier. MDP consists of the
following:

States: Set of states. Here we have 16 states (each little square box in the grid).
Actions: Set of all possible actions (left, right, up, down; these are all the four
possible actions our agent can take in our frozen lake environment).
Transition probabilities: The probability of moving from one state (F) to another
state (H) by performing an action a.
Rewards probabilities: This is the probability of receiving a reward
while moving from one state (F) to another state (H) by performing an action a.

Now our objective is to solve MDP. Solving the MDP implies finding the optimal policies.
We introduce three special functions now:

Policy function: Specifies what action to perform in each state
Value function: Specifies how good a state is
Q function: Specifies how good an action is in a particular state

When we say how good, what does that really mean? It implies how good it is to maximize
the rewards.

Then, we represent the value function and Q function using a special equation called a
Bellman Optimality equation. If we solve this equation, we can find the optimal policy.
Here, solving the equation means finding the right value function and policy. If we find the
right value function and policy, that will be our optimal path which yields maximum
rewards.

The Markov Decision Process and Dynamic Programming Chapter 3

[60]

We will use a special technique called dynamic programming to solve the Bellman
optimality equation. To apply DP, the model dynamics have to be known in advance,
which basically means the model environment's transition probabilities and reward
probabilities have to be known in advance. Since we know the model dynamics, we can use
DP here. We use two special DP algorithms to find the optimal policy:

Value iteration
Policy iteration

Value iteration
To put it in simple terms, in value iteration, we first initialize some random value to the
value function. There is a great probability that the random value we initialize is not going
to be optimal. So, we iterate over each state and find the new value function; we stop the
iteration until we find the optimal value function. Once we find the optimal value function,
we can easily extract the optimal policy from that.

Now we will see how to solve the frozen lake problem using value iteration.

First, we import necessary libraries:

import gym
import numpy as np

Then we make our frozen lake environment using OpenAI's Gym:

env = gym.make('FrozenLake-v0')

We will first explore the environments.

The number of states in the environment is 16 as we have a 4*4 grid:

print(env.observation_space.n)

The number of actions in the environment is four, which are up, down, left, and right:

print(env.observation_space.n)

Now we define a value_iteration() function which returns the optimal value function
(value table). We will first see the function step by step and then look at the whole function.

The Markov Decision Process and Dynamic Programming Chapter 3

[61]

First, we initialize the random value table which is 0 for all the states and numbers of
iterations:

value_table = np.zeros(env.observation_space.n)
no_of_iterations = 100000

Then, upon starting each iteration, we copy the value_table to updated_value_table:

 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)

Now we calculate the Q table and pick up the maximum state-action pair which has the
highest value as the value table.

We will understand the code with the example we solved previously; we computed the Q
value for state A and action 1 in our previous example:

Q(A,1) = (0.3 * (0+0)) + (0.1 * (-1.0 + 0)) + (0.5 + (1.0 + 0))

Q(A,1) = 0.5

Instead of creating a Q table for each state, we create a list called Q_value, then for each
action in the state, we create a list called next_states_rewards, which store the Q_value
for the next transition state. Then we sum the next_state_rewards and append it to our
Q_value.

Look at the preceding example, where the state is A and the action is 1. (0.3 * (0+0)) is the
next state reward for the transition state A and (0.1 * (-1.0 + 0)) is the next state reward for
the transition state B. (0.5 + (1.0 + 0)) is the next state reward for the transition state C. We
sum all this as next_state_reward and append it to our Q_value, which would be 0.5.

As we calculate next_state_rewards for all actions of a state and append it to our Q
value, we pick up the maximum Q value and update it as a value of our state:

for state in range(env.observation_space.n):
 Q_value = []
 for action in range(env.action_space.n):
 next_states_rewards = []
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob + gamma *
updated_value_table[next_state])))
 Q_value.append(np.sum(next_states_rewards))

The Markov Decision Process and Dynamic Programming Chapter 3

[62]

 #Pick up the maximum Q value and update it as value of a state
 value_table[state] = max(Q_value)

Then, we will check whether we have reached the convergence, that is, the difference
between our value table and updated value table is very small. How do we know it is very
small? We define a variable called threshold and then we will see if the difference is less
than our threshold; if it is less, we break the loop and return the value function as the
optimal value function:

threshold = 1e-20
if (np.sum(np.fabs(updated_value_table - value_table)) <= threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break

Look at the complete function of value_iteration() for a better understanding:

def value_iteration(env, gamma = 1.0):
 value_table = np.zeros(env.observation_space.n)
 no_of_iterations = 100000
 threshold = 1e-20

 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)

 for state in range(env.observation_space.n):
 Q_value = []

 for action in range(env.action_space.n):
 next_states_rewards = []

 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob +
gamma * updated_value_table[next_state])))

 Q_value.append(np.sum(next_states_rewards))
 value_table[state] = max(Q_value)
 if (np.sum(np.fabs(updated_value_table - value_table)) <=
threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break
 return value_table, Q_value

Thus, we can derive optimal_value_function using the value_iteration:

optimal_value_function = value_iteration(env=env,gamma=1.0)

The Markov Decision Process and Dynamic Programming Chapter 3

[63]

After finding optimal_value_function, how can we extract the optimal policy from the
optimal_value_function? We calculate the Q value using our optimal value action and
pick up the actions which have the highest Q value for each state as the optimal policy. We
do this via a function called extract_policy(); we will look at this step by step now.

First, we define the random policy; we define it as 0 for all the states:

policy = np.zeros(env.observation_space.n)

Then, for each state, we build a Q_table and for each action in that state we compute the Q
value and add it to our Q_table:

for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))

Then we pick up the policy for the state as the action that has the highest Q value:

policy[state] = np.argmax(Q_table)

Look at the complete function:

def extract_policy(value_table, gamma = 1.0):

 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

Thus, we can derive the optimal_policy as follows:

optimal_policy = extract_policy(optimal_value_function, gamma=1.0)

We will get an output as follows, which is the optimal_policy, the actions to be
performed in each state:

array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])

The Markov Decision Process and Dynamic Programming Chapter 3

[64]

The complete program is given as follows:

import gym
import numpy as np
env = gym.make('FrozenLake-v0')

def value_iteration(env, gamma = 1.0):
 value_table = np.zeros(env.observation_space.n)
 no_of_iterations = 100000
 threshold = 1e-20
 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)
 for state in range(env.observation_space.n):
 Q_value = []
 for action in range(env.action_space.n):
 next_states_rewards = []
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob +
gamma * updated_value_table[next_state])))
 Q_value.append(np.sum(next_states_rewards))
 value_table[state] = max(Q_value)
 if (np.sum(np.fabs(updated_value_table - value_table)) <=
threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break
 return value_table

def extract_policy(value_table, gamma = 1.0):
 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

optimal_value_function = value_iteration(env=env,gamma=1.0)
optimal_policy = extract_policy(optimal_value_function, gamma=1.0)

print(optimal_policy)

The Markov Decision Process and Dynamic Programming Chapter 3

[65]

Policy iteration
In policy iteration, first we initialize a random policy. Then we will evaluate the random
policies we initialized: are they good or not? But how can we evaluate the policies? We will
evaluate our randomly initialized policies by computing value functions for them. If they
are not good, then we find a new policy. We repeat this process until we find a good policy.

Now let us see how to solve the frozen lake problem using policy iteration.

Before looking at policy iteration, we will see how to compute a value function, given a
policy.

We initialize value_table as zero with the number of states:

value_table = np.zeros(env.nS)

Then, for each state, we get the action from the policy, and we compute the value function
according to that action and state as follows:

 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])

We break this when the difference between value_table and updated_value_table is
less than our threshold:

threshold = 1e-10
if (np.sum((np.fabs(updated_value_table - value_table))) <= threshold):
 break

Look at the following complete function:

def compute_value_function(policy, gamma=1.0):
 value_table = np.zeros(env.nS)
 threshold = 1e-10
 while True:
 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])

The Markov Decision Process and Dynamic Programming Chapter 3

[66]

 if (np.sum((np.fabs(updated_value_table - value_table))) <=
threshold):
 break
 return value_table

Now we will see how to perform policy iteration, step by step.

First, we initialize random_policy as zero NumPy array with shape as number of states:

 random_policy = np.zeros(env.observation_space.n)

Then, for each iteration, we calculate the new_value_function according to our random
policy:

new_value_function = compute_value_function(random_policy, gamma)

We will extract the policy using the calculated new_value_function. The
extract_policy function is the same as the one we used in value iteration:

 new_policy = extract_policy(new_value_function, gamma)

Then we check whether we have reached convergence, that is, whether we found the
optimal policy by comparing random_policy and the new policy. If they are the same, we
will break the iteration; otherwise we update random_policy with new_policy:

if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
random_policy = new_policy

Look at the complete policy_iteration function:

def policy_iteration(env,gamma = 1.0):
 random_policy = np.zeros(env.observation_space.n)
 no_of_iterations = 200000
 gamma = 1.0
 for i in range(no_of_iterations):
 new_value_function = compute_value_function(random_policy, gamma)
 new_policy = extract_policy(new_value_function, gamma)
 if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
 random_policy = new_policy
 return new_policy

The Markov Decision Process and Dynamic Programming Chapter 3

[67]

Thus, we can get optimal_policy using policy_iteration:

optimal_policy = policy_iteration(env, gamma = 1.0)

We will get some output, which is the optimal_policy, the actions to be performed in
each state:

array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])

The complete program is given as follows:

import gym
import numpy as np

env = gym.make('FrozenLake-v0')

def compute_value_function(policy, gamma=1.0):
 value_table = np.zeros(env.nS)
 threshold = 1e-10
 while True:
 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])
 if (np.sum((np.fabs(updated_value_table - value_table))) <=
threshold):
 break
 return value_table

def extract_policy(value_table, gamma = 1.0):
 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

def policy_iteration(env,gamma = 1.0):
 random_policy = np.zeros(env.observation_space.n)
 no_of_iterations = 200000

The Markov Decision Process and Dynamic Programming Chapter 3

[68]

 gamma = 1.0
 for i in range(no_of_iterations):
 new_value_function = compute_value_function(random_policy, gamma)
 new_policy = extract_policy(new_value_function, gamma)
 if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
 random_policy = new_policy
 return new_policy

print (policy_iteration(env))

Thus, we can derive the optimal policy, which specifies what action to perform in each
state, using value and policy iteration to solve the frozen lake problem.

Summary
In this chapter, we learned what the Markov chain and Markov process are and how RL
problems are represented using MDP. We have also looked at the Bellman equation, and
we solved the Bellman equation to derive an optimal policy using DP. In the Chapter 4,
Gaming with Monte Carlo Methods, we will look at the Monte Carlo tree search and how to
build intelligent games using it.

Questions
The question list is as follows:

What is the Markov property?1.
Why do we need the Markov Decision Process?2.
When do we prefer immediate rewards?3.
What is the use of the discount factor?4.
Why do we use the Bellman function?5.
How would you derive the Bellman equation for a Q function?6.
How are the value function and Q function related?7.
What is the difference between value iteration and policy iteration?8.

The Markov Decision Process and Dynamic Programming Chapter 3

[69]

Further reading
MDP Harvard lecture materials: http://am121.seas.harvard.edu/site/wp-content/
uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf

http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf

4
Gaming with Monte Carlo

Methods
Monte Carlo is one of the most popular and most commonly used algorithms in various
fields ranging from physics and mechanics to computer science. The Monte Carlo algorithm
is used in reinforcement learning (RL) when the model of the environment is not known.
In the previous chapter, we looked at using dynamic programming (DP) to find an optimal
policy where we know the model dynamics, which is transition and reward probabilities.
But how can we determine the optimal policy when we don't know the model dynamics? In
that case, we use the Monte Carlo algorithm; it is extremely powerful for finding optimal
policies when we don't have knowledge of the environment.

In this chapter, you will learn about the following:

Monte Carlo methods
Monte Carlo prediction
Playing Blackjack with Monte Carlo
Model Carlo control
Monte Carlo exploration starts
On-policy Monte Carlo control
Off-policy Monte Carlo control

Monte Carlo methods
The Monte Carlo method finds approximate solutions through random sampling, that is, it
approximates the probability of an outcome by running multiple trails. It is a statistical
technique to find an approximate answer through sampling. Let's better understand Monte
Carlo intuitively with an example.

Gaming with Monte Carlo Methods Chapter 4

[71]

Fun fact: Monte Carlo is named after Stanislaw Ulam's uncle, who often
borrowed money from his relatives to gamble in a Monte Carlo casino.

Estimating the value of pi using Monte Carlo
Imagine a quadrant of a circle is placed inside a square, as shown next, and
we generate some random points inside the square. You can see that some of the points fall
inside the circle while others are outside the circle:

We can write:

We know that the area of a circle is πr2 and the area of a square is a2:

Let's consider that the radius of a circle is one half and the square's side is 1, so we can
substitute:

Now we get the following:

Gaming with Monte Carlo Methods Chapter 4

[72]

The steps to estimate π are very simple:

First, we generate some random points inside the square.1.
Then we can calculate the number of points that fall inside the circle by using the2.
equation .
Then we calculate the value of π by multiplying four to the division of the3.
number of points inside the circle to the number of points inside the square.
If we increase the number of samples (number of random points), the better we4.
can approximate

Let's see how to do this in Python step by step. First, we import necessary libraries:

import numpy as np
import math
import random
import matplotlib.pyplot as plt
%matplotlib inline

Now we initialize the square size and number of points inside the circle and square. We
also initialize the sample size, which denotes the number of random points to be generated.
We define arc, which is basically the circle quadrant:

square_size = 1
points_inside_circle = 0
points_inside_square = 0
sample_size = 1000
arc = np.linspace(0, np.pi/2, 100)

Then we define a function called generate_points(), which generates random points
inside the square:

def generate_points(size):
 x = random.random()*size
 y = random.random()*size
 return (x, y)

We define a function called is_in_circle(), which will check if the point we generated
falls within the circle:

def is_in_circle(point, size):
 return math.sqrt(point[0]**2 + point[1]**2) <= size

Then we define a function for calculating the π value:

def compute_pi(points_inside_circle, points_inside_square):
 return 4 * (points_inside_circle / points_inside_square)

Gaming with Monte Carlo Methods Chapter 4

[73]

Then for the number of samples, we generate some random points inside the square and
increment our points_inside_square variable, and then we will check if the points we
generated lie inside the circle. If yes, then we increment the points_inside_circle
variable:

plt.axes().set_aspect('equal')
plt.plot(1*np.cos(arc), 1*np.sin(arc))

for i in range(sample_size):
 point = generate_points(square_size)
 plt.plot(point[0], point[1], 'c.')
 points_inside_square += 1
 if is_in_circle(point, square_size):
 points_inside_circle += 1

Now we calculate the value of π using the compute_pi(), function which will print an
approximate value of π:

print("Approximate value of pi is {}"
.format(calculate_pi(points_inside_circle, points_inside_square)))

If you run the program, you will get the output shown as follows:

Approximate value of pi is 3.144

The complete program looks as follows:

import numpy as np
import math
import random
import matplotlib.pyplot as plt
%matplotlib inline

square_size = 1
points_inside_circle = 0
points_inside_square = 0

Gaming with Monte Carlo Methods Chapter 4

[74]

sample_size = 1000
arc = np.linspace(0, np.pi/2, 100)

def generate_points(size):
 x = random.random()*size
 y = random.random()*size
 return (x, y)

def is_in_circle(point, size):
 return math.sqrt(point[0]**2 + point[1]**2) <= size

def compute_pi(points_inside_circle, points_inside_square):
 return 4 * (points_inside_circle / points_inside_square)

plt.axes().set_aspect('equal')
plt.plot(1*np.cos(arc), 1*np.sin(arc))

for i in range(sample_size):
 point = generate_points(square_size)
 plt.plot(point[0], point[1], 'c.')
 points_inside_square += 1
 if is_in_circle(point, square_size):
 points_inside_circle += 1

print("Approximate value of pi is {}"
.format(calculate_pi(points_inside_circle, points_inside_square)))

Thus, the Monte Carlo method approximated the value of pi by using random sampling.
We estimated the value of pi using the random points (samples) generated inside the
square. The greater the sampling size, the better our approximation will be. Now we will
see how to use Monte Carlo methods in RL.

Monte Carlo prediction
In DP, we solve the Markov Decision Process (MDP) by using value iteration and policy
iteration. Both of these techniques require transition and reward probabilities to find the
optimal policy. But how can we solve MDP when we don't know the transition and reward
probabilities? In that case, we use the Monte Carlo method. The Monte Carlo method
requires only sample sequences of states, actions, and rewards. the Monte Carlo methods
are applied only to the episodic tasks. Since Monte Carlo doesn't require any model, it is
called the model-free learning algorithm.

Gaming with Monte Carlo Methods Chapter 4

[75]

The basic idea of the Monte Carlo method is very simple. Do you recall how we defined the
optimal value function and how we derived the optimal policy in the Chapter 3, Markov
Decision Process and Dynamic Programming?

A value function is basically the expected return from a state S with a policy π. Here,
instead of expected return, we use mean return.

Thus, in Monte Carlo prediction, we approximate the value function by
taking the mean return instead of the expected return.

Using Monte Carlo prediction, we can estimate the value function of any given policy. The
steps involved in the Monte Carlo prediction are very simple and are as follows:

First, we initialize a random value to our value function1.
Then we initialize an empty list called a return to store our returns2.
Then for each state in the episode, we calculate the return3.
Next, we append the return to our return list4.
Finally, we take the average of return as our value function5.

The following flowchart makes it more simple:

Gaming with Monte Carlo Methods Chapter 4

[76]

The Monte Carlo prediction algorithm is of two types:

First visit Monte Carlo
Every visit Monte Carlo

First visit Monte Carlo
As we have seen, in the Monte Carlo methods, we approximate the value function by
taking the average return. But in the first visit MC method, we average the return only the
first time the state is visited in an episode. For example, consider an agent is playing the
snakes and ladder games, there is a good chance the agent will return to the state if it is
bitten by a snake. When the agent revisits the state, we don't consider an average return.
We consider an average return only when the agent visits the state for the first time.

Every visit Monte Carlo
In every visit Monte Carlo, we average the return every time the state is visited in an
episode. Consider the same snakes and ladders game example: if the agent returns to the
same state after a snake bites it, we can think of this as an average return although the agent
is revisiting the state. In this case, we average return every time the agents visit the state.

Let's play Blackjack with Monte Carlo
Now let's better understand Monte Carlo with the Blackjack game. Blackjack, also called 21,
is a popular card game played in casinos. The goal of the game is to have a sum of all your
cards close to 21 and not exceeding 21. The value of cards J, K, and Q is 10. The value of ace
can be 1 or 11; this depends on player choice. The value of the rest of the cards (1 to 10) is
the same as the numbers they show.

The rules of the game are very simple:

The game can be played with one or many players and one dealer.
Each player competes only with the dealer and not another player.
Initially, a player is given two cards. Both of these cards are face up, that is,
visible to others.
A dealer is also given two cards. One card is face up and the other is face down.
That is, the dealer only shows one of his cards.

Gaming with Monte Carlo Methods Chapter 4

[77]

If the sum of a player's cards is 21 immediately after receiving two cards (say a
player has received a jack and ace which is 10+11 = 21), then it is called natural or
Blackjack and the player wins.
If the dealer's sum of cards is also 21 immediately after receiving two cards, then
it is called a draw as both of them have 21.
In each round, the player decides whether he needs another card or not to sum
the cards close to 21.
If a player needs a card, then it is called a hit.
If a player doesn't need a card, then it is called a stand.
If a player's sum of cards exceeds 21, then it is called bust; then the dealer will
win the game.

Let's better understand Blackjack by playing. I'll let you be the player and I am the dealer:

In the preceding diagram, we have one player and a dealer. Both of them are given two
cards. Both of the player's two cards are face up (visible) while the dealer has one card face
up (visible) and the other face down (invisible). In the first round, you have been given two
cards, say a jack and a number 7, which is (10 + 7 = 17), and I as the dealer will only show
you one card which is number 2. I have another card face down. Now you have to decide to
either hit (need another card) or stand (don't need another card). If you choose to hit and
receive number 3 you will get 10+7+3 = 20 which is close to 21 and you win:

Gaming with Monte Carlo Methods Chapter 4

[78]

But if you received a card, say number 7, then 10+7+7 = 24, which exceeds 21. Then it is
called bust and you lose the game. If you decide to stand with your initial cards, then you
have only 10 + 7 = 17. Then we will check the dealer's sum of cards. If it is greater than 17
and does not exceed 21 then the dealer wins, otherwise you win:

The rewards here are:

+1 if the player won the game
-1 if the player loses the game
0 if the game is a draw

The possible actions are:

Hit: If the player needs a card
Stand: If the player doesn't need a card

The player has to decide the value of an ace. If the player's sum of cards is 10 and the player
gets an ace after a hit, he can consider it as 11, and 10 + 11 = 21. But if the player's sum of
cards is 15 and the player gets an ace after a hit, if he considers it as 11 and 15+11 = 26, then
it's a bust. If the player has an ace we can call it a usable ace; the player can consider it as 11
without being bust. If the player is bust by considering the ace as 11, then it is called
a nonusable ace.

Now we will see how to implement Blackjack using the first visit Monte Carlo algorithm.

First, we will import our necessary libraries:

import gym
from matplotlib import pyplot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from collections import defaultdict

Gaming with Monte Carlo Methods Chapter 4

[79]

from functools import partial
%matplotlib inline
plt.style.use('ggplot')

Now we will create the Blackjack environment using OpenAI's Gym:

env = gym.make('Blackjack-v0')

Then we define the policy function which takes the current state and checks if the score is
greater than or equal to 2o; if it is, we return 0 or else we return 1. That is, if the score is
greater than or equal to 20, we stand (0) or else we hit (1):

def sample_policy(observation):
 score, dealer_score, usable_ace = observation
 return 0 if score >= 20 else 1

Now we will see how to generate an episode. An episode is a single round of a game. We
will see it step by step and then look at the complete function.

We define states, actions, and rewards as a list and initiate the environment using
env.reset and store an observation variable:

states, actions, rewards = [], [], []
observation = env.reset()

Then, until we reach the terminal state, that is, till the end of the episode, we do the
following:

Append the observation to the states list:1.

states.append(observation)

Now, we create an action using our sample_policy function and append the2.
actions to an action list:

action = sample_policy(observation)
actions.append(action)

Then, for each step in the environment, we store the state, reward, and done3.
(which specifies whether we reached terminal state) and we append the rewards
to the reward list:

observation, reward, done, info = env.step(action)
rewards.append(reward)

Gaming with Monte Carlo Methods Chapter 4

[80]

If we reached the terminal state, then we break:4.

if done:
 break

The complete generate_episode function is as follows:5.

def generate_episode(policy, env):
 states, actions, rewards = [], [], []
 observation = env.reset()
 while True:
 states.append(observation)
 action = policy(observation)
 actions.append(action)
 observation, reward, done, info = env.step(action)
 rewards.append(reward)
 if done:
 break

 return states, actions, rewards

This is how we generate an episode. How can we play the game? For that, we need to know
the value of each state. Now we will see how to get the value of each state using the first
visit Monte Carlo method.

First, we initialize the empty value table as a dictionary for storing the values of each state:

value_table = defaultdict(float)

Then, for a certain number of episodes, we do the following:

First, we generate an episode and store the states and rewards; we initialize1.
returns as 0 which is the sum of rewards:

states, _, rewards = generate_episode(policy, env)
returns = 0

Then for each step, we store the rewards to a variable R and states to S, and we2.
calculate returns as a sum of rewards:

for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R

Gaming with Monte Carlo Methods Chapter 4

[81]

We now perform the first visit Monte Carlo; we check if the episode is being3.
visited for the visit time. If it is, we simply take the average of returns and assign
the value of the state as an average of returns:

if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - V[S]) / N[S]

Look at the complete function for better understanding:4.

def first_visit_mc_prediction(policy, env, n_episodes):
 value_table = defaultdict(float)
 N = defaultdict(int)

 for _ in range(n_episodes):
 states, _, rewards = generate_episode(policy, env)
 returns = 0
 for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R
 if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - V[S]) / N[S]
 return value_table

We can get the value of each state:5.

value = first_visit_mc_prediction(sample_policy, env,
n_episodes=500000)

Let's see the value of a few states:6.

print(value)
defaultdict(float,
 {(4, 1, False): -1.024292170184644,
 (4, 2, False): -1.8670191351012455,
 (4, 3, False): 2.211363314854649,
 (4, 4, False): 16.903201033000823,
 (4, 5, False): -5.786238030898542,
 (4, 6, False): -16.218211752577602,

Gaming with Monte Carlo Methods Chapter 4

[82]

We can also plot the value of the state to see how it is converged, as follows:

The complete code is given as follows:

import numpy
import gym
from matplotlib import pyplot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from collections import defaultdict
from functools import partial
%matplotlib inline

plt.style.use('ggplot')

Blackjack Environment

env = gym.make('Blackjack-v0')

env.action_space, env.observation_space

def sample_policy(observation):
 score, dealer_score, usable_ace = observation
 return 0 if score >= 20 else 1

def generate_episode(policy, env):
 states, actions, rewards = [], [], []
 observation = env.reset()

Gaming with Monte Carlo Methods Chapter 4

[83]

 while True:
 states.append(observation)
 action = sample_policy(observation)
 actions.append(action)
 observation, reward, done, info = env.step(action)
 rewards.append(reward)
 if done:
 break

 return states, actions, rewards

def first_visit_mc_prediction(policy, env, n_episodes):
 value_table = defaultdict(float)
 N = defaultdict(int)

 for _ in range(n_episodes):
 states, _, rewards = generate_episode(policy, env)
 returns = 0
 for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R
 if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - value_table[S]) / N[S]
 return value_table

def plot_blackjack(V, ax1, ax2):
 player_sum = numpy.arange(12, 21 + 1)
 dealer_show = numpy.arange(1, 10 + 1)
 usable_ace = numpy.array([False, True])

 state_values = numpy.zeros((len(player_sum),
 len(dealer_show),
 len(usable_ace)))

 for i, player in enumerate(player_sum):
 for j, dealer in enumerate(dealer_show):
 for k, ace in enumerate(usable_ace):
 state_values[i, j, k] = V[player, dealer, ace]

 X, Y = numpy.meshgrid(player_sum, dealer_show)

 ax1.plot_wireframe(X, Y, state_values[:, :, 0])
 ax2.plot_wireframe(X, Y, state_values[:, :, 1])
 for ax in ax1, ax2:
 ax.set_zlim(-1, 1)

Gaming with Monte Carlo Methods Chapter 4

[84]

 ax.set_ylabel('player sum')
 ax.set_xlabel('dealer showing')
 ax.set_zlabel('state-value')
fig, axes = pyplot.subplots(nrows=2, figsize=(5, 8),
subplot_kw={'projection': '3d'})
axes[0].set_title('value function without usable ace')
axes[1].set_title('value function with usable ace')
plot_blackjack(value, axes[0], axes[1])

Monte Carlo control
In Monte Carlo prediction, we have seen how to estimate the value function. In Monte
Carlo control, we will see how to optimize the value function, that is, how to make the
value function more accurate than the estimation. In the control methods, we follow a new
type of iteration called generalized policy iteration, where policy evaluation and policy
improvement interact with each other. It basically runs as a loop between policy evaluation
and improvement, that is, the policy is always improved with respect to the value function,
and the value function is always improved according to the policy. It keeps on doing this.
When there is no change, then we can say that the policy and value function have attained
convergence, that is, we found the optimal value function and optimal policy:

Now we will see a different Monte Carlo control algorithm as follows.

Monte Carlo exploration starts
Unlike DP methods, here we do not estimate state values. Instead, we focus on action
values. State values alone are sufficient when we know the model of the environment. As
we don't know about the model dynamics, it is not a good way to determine the state
values alone.

Gaming with Monte Carlo Methods Chapter 4

[85]

Estimating an action value is more intuitive than estimating a state value because state
values vary depending on the policy we choose. For example, in a Blackjack game, say we
are in a state where some of the cards are 20. What is the value of this state? It solely
depends on the policy. If we choose our policy as a hit, then it is not a good state to be in
and the value of this state is very low. However, if we choose our policy as a stand then it is
definitely a good state to be in. Thus, the value of the state depends on the policy we
choose. So it is more important to estimate the value of an action instead of the value of the
state.

How do we estimate the action values? Remember the Q function we learned in Chapter 3,
Markov Decision Process and Dynamic Programming? The Q function denoted as Q(s, a) is used
for determining how good an action is in a particular state. It basically specifies the state-
action pair.

But here the problem of exploration comes in. How can we know about the state-action
value if we haven't been in that state? If we don't explore all the states with all possible
actions, we might probably miss out the good rewards.

Say that in a Blackjack game, we are in a state where a sum of cards is 20. If we try only the
action hit we will get a negative reward, and we learn that it is not a good state to be in. But
if we try the stand action, we receive a positive reward and it is actually the best state to be
in. So every time we come to this particular state, we stand instead of hit. For us to know
which is the best action, we have to explore all possible actions in each state to find the
optimal value. How can we do this?

Let me introduce a new concept called Monte Carlo exploring starts, which implies that for
each episode we start with a random state as an initial state and perform an action. So, if we
have a large number of episodes, we could possibly cover all the states with all possible
actions. It is also called an MC-ES algorithm.

The MC-ES algorithm is very simple, as follows:

 We first initialize Q function and policy with some random values and also we
initialize a return to an empty list
Then we start the episode with our randomly initialized policy
Then we calculate the return for all the unique state-action pairs occurring in the
episode and append return to our return list
We calculate a return only for a unique state-action pair because the same state
action pair occurs in an episode multiple times and there is no point having
redundant information

Gaming with Monte Carlo Methods Chapter 4

[86]

Then we take an average of the returns in the return list and assign that value to
our Q function

Finally, we will select an optimal policy for a state, choosing an action that has
the maximum Q(s,a) for that state
We repeat this whole process forever or for a large number of episodes so that we
can cover all different states and action pairs

Here's a flowchart of this:

On-policy Monte Carlo control
In Monte Carlo exploration starts, we explore all state-action pairs and choose the one that
gives us the maximum value. But think of a situation where we have a large number of
states and actions. In that case, if we use the MC-ES algorithm, then it will take a lot of time
to explore all combinations of states and actions and to choose the best one. How do we get
over this? There are two different control algorithms. On policy and off policy. In on-policy
Monte Carlo control, we use the ε greedy policy. Let's understand what a greedy algorithm
is.

Gaming with Monte Carlo Methods Chapter 4

[87]

A greedy algorithm picks up the best choice available at that moment, although that choice
might not be optimal when you consider the overall problem. Consider you want to find
the smallest number from a list of numbers. Instead of finding the smallest number directly
from the list, you will divide the list into three sublists. Then you will find the smallest
number in each of the sublists (local optima). The smallest number you find in one sublist
might not be the smallest number when you consider the whole list (global optima).
However, if you are acting greedy then you will see the smallest number in only the current
sublist (at the moment) and consider it the smallest number.

The greedy policy denotes the optimal action within the actions explored. The optimal
action is the one which has the highest value.

Say we have explored some actions in the state 1, as shown in the Q table:

State Action Value
State 1 Action 0 0.5
State 1 Action 1 0.1
State 1 Action 2 0.8

If we are acting greedy, we would pick up the action that has maximal value out of all the
actions we explored. In the preceding case, we have action 2 which has high value, so we
pick up that action. But there might be other actions in the state 1 that we haven't explored
and might the highest value. So we have to look for the best action or exploit the action that
is best out of all explored actions. This is called an exploration-exploitation dilemma. Say
you listened to Ed Sheeran and you liked him very much, so you kept on listening to Ed
Sheeran only (exploiting) because you liked the music. But if you tried listening to other
artists you might like someone better than Ed Sheeran (exploration). This confusion as to
whether you have to listen to only Ed Sheeran (exploitation) or try listening to different
artists to see if you like them (exploration) is called an exploration-exploitation dilemma.

So to avoid this dilemma, we introduce a new policy called the epsilon-greedy policy. Here,
all actions are tried with a non-zero probability (epsilon). With a probability epsilon, we
explore different actions randomly and with a probability 1-epsilon we choose an action
that has maximum value, that is, we don't do any exploration. So instead of just exploiting
the best action all the time, with probability epsilon, we explore different actions randomly.
If the value of the epsilon is set to zero, then we will not do any exploration. It is simply the
greedy policy, and if the value of epsilon is set to one, then it will always do only
exploration. The value of the epsilon will decay over time as we don't want to explore
forever. So over time our policy exploits good actions:

Gaming with Monte Carlo Methods Chapter 4

[88]

Let us say we set the value of epsilon to 0.3. In the following code, we generate a random
value from the uniform distribution and if the value is less than epsilon value, that is, 0.3,
then we select a random action (in this way, we search for a different action). If the random
value from the uniform distribution is greater than 0.3, then we select the action that has the
best value. So, in this way, we explore actions that we haven't seen before with the
probability epsilon and select the best actions out of the explored actions with the
probability 1-epsilon:

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
q[(state,x)])

Let us imagine that we have explored further actions in the state 1 with the epsilon-greedy
policy (although not all of the actions pair) and our Q table looks as follows:

State Action Value
State 1 Action 0 0.5
State 1 Action 1 0.1
State 1 Action 2 0.8
State 1 Action 4 0.93

In state 1, action 4 has a higher value than the action 2 we found previously. So with the
epsilon-greedy policy, we look for different actions with the probability epsilon and exploit
the best action with the probability 1-epsilon.

The steps involved in the on-policy Monte Carlo method are very simple:

First, we initialize a random policy and a random Q function.1.
Then we initialize a list called return for storing the returns.2.
We generate an episode using the random policy π.3.
 We store the return of every state action pair occurring in the episode to the4.
return list.

Gaming with Monte Carlo Methods Chapter 4

[89]

Then we take an average of the returns in the return list and assign that value to5.
the Q function.
Now the probability of selecting an action a in the state s will be decided by6.
epsilon.
If the probability is 1-epsilon we pick up the action which has the maximal Q7.
value.
If the probability is epsilon, we explore for different actions.8.

Off-policy Monte Carlo control
Off-policy Monte Carlo is another interesting Monte Carlo control method. In this method,
we have two policies: one is a behavior policy and another is a target policy. In the off-
policy method, agents follow one policy but in the meantime, it tries to learn and improve a
different policy. The policy an agent follows is called a behavior policy and the policy an
agent tries to evaluate and improve is called a target policy. The behavior and target policy
are totally unrelated. The behavior policy explores all possible states and actions and that is
why a behavior policy is called a soft policy, whereas a target policy is said to be a greedy
policy (it selects the policy which has the maximal value).

Our goal is to estimate the Q function for the target policy π, but our agents behave using a
completely different policy called behavior policy . What can we do now? We can
estimate the value of by using the common episodes that took place in . How can we
estimate the common episodes between these two policies? We use a new technique called
importance sampling. It is a technique for estimating values from one distribution given
samples from another.

Importance sampling is of two types:

Ordinary importance sampling
Weighted importance sampling

In ordinary importance sampling, we basically take the ratio of returns obtained by the
behavior policy and target policy, whereas in weighted importance sampling we take the
weighted average and C is the cumulative sum of weights.

Let us just see this step by step:

First, we initialize Q(s,a) to random values and C(s,a) to 0 and weight w as 1.1.
Then we choose the target policy, which is a greedy policy. This means it will2.
pick up the policy which has a maximum value from the Q table.

Gaming with Monte Carlo Methods Chapter 4

[90]

We select our behavior policy. A behavior policy is not greedy and it can select3.
any state-action pair.
Then we begin our episode and perform an action a in the state s according to our4.
behavior policy and store the reward. We repeat this until the end of the episode.
Now, for each state in the episode, we do the following:5.

We will calculate return G. We know that the return is the sum of1.
discounted rewards: G = discount_ factor * G + reward.
Then we update C(s,a) as C(s,a) = C(s,a) + w.2.

We update Q(s,a): .3.

We update the value of w: .4.

Summary
In this chapter, we learned about how the Monte Carlo method works and how can we use
it to solve MDP when we don't know the model of the environment. We have looked at two
different methods: one is Monte Carlo prediction, which is used for estimating the value
function, and the other is Monte Carlo control, which is used for optimizing the value
function.

We looked at two different methods in Monte Carlo prediction: first visit Monte Carlo
prediction, where we average the return only the first time the state is visited in an episode,
and the every visit Monte Carlo method, where we average the return every time the state
is visited in an episode.

In terms of Monte Carlo control, we looked at different algorithms. We first encountered
MC-ES control, which is used to cover all state-action pairs. We looked at on-policy MC
control, which uses the epsilon-greedy policy, and off-policy MC control, which uses two
policies at a time.

In the Chapter 5, Temporal Difference Learning we will look at a different model-free
learning algorithm.

Gaming with Monte Carlo Methods Chapter 4

[91]

Questions
The question list is as follows:

What is the Monte Carlo Method?1.
Estimate the value of the Golden Ratio using the Monte Carlo method.2.
What is the use of Monte Carlo prediction?3.
What is the difference between first visit MC and every visit MC?4.
Why do we estimate the state-action value?5.
What is the difference between on-policy MC control and off-policy MC control?6.
Write some Python code for playing a Blackjack game with on-policy MC7.
control.

Further reading
Please refer to the following links:

David Silver's model-free prediction
presentation: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_file
s/MC-TD.pdf

David Silver's model-free control
presentation: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_file
s/control.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/control.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/control.pdf

5
Temporal Difference Learning

In the previous chapter, we learned about the interesting Monte Carlo method, which is
used for solving the Markov Decision Process (MDP) when the model dynamics of the
environment are not known in advance, unlike dynamic programming. We looked at the
Monte Carlo prediction method, which is used for predicting value functions and control
methods for further optimizing value functions. But there are some pitfalls with the Monte
Carlo method. It is applied only for episodic tasks. If an episode is very long, then we have
to wait a long time for computing value functions. So, we will use another interesting
algorithm called temporal-difference (TD) learning, which is a model-free learning
algorithm: it doesn't require the model dynamics to be known in advance and it can be
applied for non-episodic tasks as well.

In this chapter, you will learn about:

TD learning
Q learning
SARSA
Taxi scheduling using Q learning and SARSA
The difference between Q learning and SARSA

TD learning
The TD learning algorithm was introduced by Sutton in 1988. The algorithm takes the
benefits of both the Monte Carlo method and dynamic programming (DP) into account.
Like the Monte Carlo method, it doesn't require model dynamics, and like DP it doesn't
need to wait until the end of the episode to make an estimate of the value function. Instead,
it approximates the current estimate based on the previously learned estimate, which is also
called bootstrapping. If you see in Monte Carlo methods there is no bootstrapping, we
made an estimate only at the end of the episode but in TD methods we can bootstrap.

Temporal Difference Learning Chapter 5

[93]

TD prediction
Like we did in Monte Carlo prediction, in TD prediction we try to predict the state values.
In Monte Carlo prediction, we estimate the value function by simply taking the mean
return. But in TD learning, we update the value of a previous state by current state. How
can we do this? TD learning using something called a TD update rule for updating the
value of a state, as follows:

The value of a previous state = value of previous state + learning_rate (reward +
discount_factor(value of current state) - value of previous state)

What does this equation actually mean?

If you think of this equation intuitively, it is actually the difference between the actual
reward () and the expected reward () multiplied by the learning rate alpha.
What does the learning rate signify? The learning rate, also called step size, is useful for
convergence.

Did you notice? Since we take the difference between the actual and predicted value as
, it is actually an error. We can call it a TD error. Over several iterations, we

will try to minimize this error.

Let us understand TD prediction with the frozen lake example as we have seen in the
previous chapters. The frozen lake environment is shown next. First, we will initialize the
value function as 0, as in V(S) as 0 for all states, as shown in the following state-value
diagram:

Say we are in a starting state (s) (1,1) and we take an action right and move to the next state
(s') (1,2) and receive a reward (r) as -0.3. How can we update the value of the state using
this information?

Recall the TD update equation:

Temporal Difference Learning Chapter 5

[94]

Let us consider the learning rate (α) as 0.1 and the discount factor () as 0.5; we know that
the value of the state (1,1), as in v(s), is 0 and the value of the next state (1,2), as in V(s'), is
also 0. The reward (r) we obtained is -0.3. We substitute this in the TD rule as follows:

V(s) = 0 + 0.1 [-0.3 + 0.5 (0)-0]
v(s) = - 0.03

So, we update the value for the state (1,1) as -0.03 in the value table, as shown in the
following diagram:

Now that we are in the state (s) as (1,2), we take an action right and move to the next state
(s') (1,3) and receive a reward (r) -0.3. How do we update the value of the state (1, 2) now?

Like we did previously, we will substitute the values in the TD update equation as:

V(s) = 0 + 0.1 [-0.3 + 0.5(0)-0]

V(s) = -0.03

So, we got the value of the state (1,2) as -0.03 and we update that in the value table as
shown here:

Now we are in the state (s) (1,3); suppose we take an action left. We again go back to that
state (s') (1,2) and we receive a reward (r) -0.3. Here, the value of the state (1,3) is 0 and the
value of the next state (1,2) is -0.03 in the value table.

Temporal Difference Learning Chapter 5

[95]

Now we can update the value of state (1,3) as follows:

V(s) = 0 +0.1 [-0.3 + 0.5 (-0.03)-0)]

V(s) = 0.1[-0.315]

V(s) = -0.0315

So, we update the value of state (1,3) as -0.0315 in the value table, as shown here:

In a similar way, we update the value of all the states using the TD update rule. The steps
involved in the TD-prediction algorithm are as follows:

First, we initialize V(S) to 0 or some arbitrary values1.
Then we begin the episode and for every step in the episode, we perform an2.
action A in the state S and receive a reward R and move to the next state (s')
Now, we update the value of the previous state using the TD update rule 3.
We repeat steps 3 and 4 until we reach the terminal state4.

TD control
In TD prediction, we estimated the value function. In TD control, we optimize the value
function. For TD control, we use two kinds of control algorithm:

Off-policy learning algorithm: Q learning
On-policy learning algorithm: SARSA

Temporal Difference Learning Chapter 5

[96]

Q learning
We will now look into the very popular off-policy TD control algorithm called Q learning.
Q learning is a very simple and widely used TD algorithm. In control algorithms, we don't
care about state value; here, in Q learning, our concern is the state-action value pair—the
effect of performing an action A in the state S.

We will update the Q value based on the following equation:

The preceding equation is similar to the TD prediction update rule with a little difference.
We will see this in detail step by step. The steps involved in Q learning are as follows:

First, we initialize the Q function to some arbitrary values1.
We take an action from a state using epsilon-greedy policy () and move it2.
to the new state
We update the Q value of a previous state by following the update rule:3.

We repeat the steps 2 and 3 till we reach the terminal state4.

Now, we will understand the algorithm using different steps.

Consider the same frozen lake example. Let us say we are in a state (3,2) and have two
actions (left and right). Now let us refer to the figure and compare it with epsilon-greedy
policy:

Temporal Difference Learning Chapter 5

[97]

In Q Learning, we select an action using the epsilon-greedy policy. We either explore a new
action with the probability epsilon or we select the best action with a probability 1- epsilon.
Let us say we select a probability epsilon and explore a new action Down and we select
that action:

Now that we have performed a downward action in the sate (3,2) and reached a new state
(4,2) using the epsilon-greedy policy, how do we update the value of the previous state (3,2)
using our update rule? It is very simple. Look at the Q table shown as following:

Let us consider alpha as 0.1 and the discount factor as 1:

Q((3,2) down) = Q((3,2), down) + 0.1 (0.3 + 1 max [Q((4,2) action)]- Q((3,2), down)

We can say the value of a state (3,2) with a downward action, as in Q((3,2), down), is 0.8 in
the Q table.

Temporal Difference Learning Chapter 5

[98]

What is max Q ((4,2), action) for the state (4,2)? We have explored only three actions (up,
down, and right) so we will take the maximum value only based on these actions. (Here,
we will not perform epsilon greedy policy; we simply select the action that has the
maximum value.)

So, based on the previous Q table, we can substitute the values as:

Q((3,2), down) = 0.8 + 0.1 (0.3 + 1 max [0.3, 0.5, 0.8] - 0.8)

= 0.8 + 0.1 (0.3 + 1 (0.8) - 0.8)

= 0.83

So, we update the value of Q ((3,2), down) to 0.83.

Remember that while choosing what action to take, we perform the
epsilon-greedy policy: we either explore for new actions with a
probability epsilon or take an action which has a maximum value with a
probability 1-epsilon. While updating the Q value, we don't perform the
epsilon-greedy policy, we simply select the action that has a maximum
value.

Now that we are in a state (4,2), we have to perform an action. What action should we
perform? We decide that based on the epsilon-greedy policy, we either explore a new
action with a probability epsilon or select the best action with a probability 1-epsilon. Let us
say we select a probability 1-epsilon and select the best action. So, in the (4,2) the action right
has a maximum value. So we will select the right action:

Temporal Difference Learning Chapter 5

[99]

Now we are in a state (4,3) as we took a right action on the state (4,2). How do we update
the value of the previous state? Like so:

Q((4,2), right) = Q((4,2), right) + 0.1 (0.3 + 1 max [Q((4,3) action)]- Q((4,2), right)

If you look at the Q table that follows, for the state (4,3) we have explored only two actions
(up and down) so we will take a maximum value only based on these actions. (Here, we
will not perform an epsilon-greedy policy; we simply select the action which has maximum
value):

Q ((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 max [(Q (4,3), up) , (Q(4,3),down)] - Q ((4,2), right)

Q ((4,2), right) = 0.8 + 0.1 (0.3 + 1 max [0.1,0.3] - 0.8)

= 0.8 + 0.1 (0.3 + 1(0.3) - 0.8)

 = 0.78

Look at the following Q table:

Now we update the value of the state Q((4,2), right) as 0.78.

So, this is how we get the state-action values in Q learning. To decide what action to take,
we use the epsilon-greedy policy and while updating the Q value we simply pick up the
maximum action; here's a flowchart:

Temporal Difference Learning Chapter 5

[100]

Temporal Difference Learning Chapter 5

[101]

Solving the taxi problem using Q learning
To demonstrate the problem let's say our agent is the driver. There are four locations and
the agent has to pick up a passenger at one location and drop them off at another. The
agent will receive +20 points as a reward for successful drop off and -1 point for every time
step it takes. The agent will also lose -10 points for illegal pickups and drops. So the goal of
our agent is to learn to pick up and drop off passengers at the correct location in a short
time without adding illegal passengers.

The environment is shown here, where the letters (R, G, Y, B) represent the different
locations and a tiny rectangle is the agent driving the taxi:

Let's look at the coding part:

import gym
import random

Now we make our environment using a gym:

env = gym.make("Taxi-v1")

What does this taxi environment look like? Like so:

env.render()

Okay, first let us initialize our learning rate alpha, epsilon value, and gamma:

alpha = 0.4
gamma = 0.999
epsilon = 0.017

Then we initialize a Q table; it has a dictionary that stores the state-action value pair as
(state, action):

q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 q[(s,a)] = 0.0

Temporal Difference Learning Chapter 5

[102]

We will define the function for updating the Q table via our Q learning update rule; if you
look at the following function, you will see that we take the action that has a maximum
value for the state-action pair and store it in a qa variable. Then we update the Q value of
the previous state via our update rule, as in:

def update_q_table(prev_state, action, reward, nextstate, alpha, gamma):
 qa = max([q[(nextstate, a)] for a in range(env.action_space.n)])
 q[(prev_state,action)] += alpha * (reward + gamma * qa -
q[(prev_state,action)])

Then, we define a function for performing the epsilon-greedy policy where we pass the
state and epsilon value. We generate some random number in uniform distribution and if
the number is less than the epsilon, we explore a different action in the state, or else we
exploit the action that has a maximum q value:

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
q[(state,x)])

We will see how to perform Q learning, putting together all these functions:

For each episode
for i in range(8000):

 r = 0
 #first we initialize the environment

 prev_state = env.reset()
 while True:
 #In each state we select action by epsilon greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon)
 #then we take the selected action and move to the next state
 nextstate, reward, done, _ = env.step(action)
 #and we update the q value using the update_q_table() function
 #which updates q table according to our update rule.

 update_q_table(prev_state, action, reward, nextstate, alpha, gamma)
 #then we update the previous state as next stat
 prev_state = nextstate

 #and store the rewards in r
 r += reward

Temporal Difference Learning Chapter 5

[103]

 #If done i.e if we reached the terminal state of the episode
 #if break the loop and start the next episode
 if done:
 break

 print("total reward: ", r)

env.close()

The complete code is given here:

import random
import gym

env = gym.make('Taxi-v1')

alpha = 0.4
gamma = 0.999
epsilon = 0.017

q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 q[(s,a)] = 0

def update_q_table(prev_state, action, reward, nextstate, alpha, gamma):
 qa = max([q[(nextstate, a)] for a in range(env.action_space.n)])
 q[(prev_state,action)] += alpha * (reward + gamma * qa -
q[(prev_state,action)])

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x: q[(state,x)])

for i in range(8000):
 r = 0
 prev_state = env.reset()
 while True:
 env.render()
 # In each state, we select the action by epsilon-greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon)
 # then we perform the action and move to the next state, and
 # receive the reward
 nextstate, reward, done, _ = env.step(action)
 # Next we update the Q value using our update_q_table function

Temporal Difference Learning Chapter 5

[104]

 # which updates the Q value by Q learning update rule
 update_q_table(prev_state, action, reward, nextstate, alpha, gamma)
 # Finally we update the previous state as next state
 prev_state = nextstate

 # Store all the rewards obtained
 r += reward

 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

 print("total reward: ", r)

env.close()

SARSA
State-Action-Reward-State-Action (SARSA) is an on-policy TD control algorithm. Like we
did in Q learning, here we also focus on state-action value instead of a state-value pair. In
SARSA, we update the Q value based on the following update rule:

In the preceding equation, you may notice that there is no max Q(s',a'), like there was in Q
learning. Here it is simply Q(s',a'). We can understand this in detail by performing some
steps. The steps involved in SARSA are as follows:

First, we initialize the Q values to some arbitrary values1.
We select an action by the epsilon-greedy policy () and move from one state2.
to another
We update the Q value previous state by following the update rule3.

, where a' is the action selected by an
epsilon-greedy policy ()

Temporal Difference Learning Chapter 5

[105]

Now, we will understand the algorithm step by step. Let us consider the same frozen lake
example. Let us say we are in state (4,2). We decide the action based on the epsilon-greedy
policy. Let us say we use a probability 1- epsilon and select the best action, which is right:

Now we are in state (4,3) after performing an action right in state (4,2). How do we update
a value of the previous state (4,2)? Let us consider the alpha as 0.1, the reward as 0.3, and
discount factor 1:

Q((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 Q((4,3), action)) - Q((4,2) , right)

How do we choose the value for Q (4,3), action)? Here, unlike in Q learning, we don't just
pick up max (Q(4,3), action). In SARSA, we use the epsilon-greedy policy.

Look at the Q table that follows. In state (4,3) we have explored two actions. Unlike Q
learning, we don't select the maximum action directly as down:

Temporal Difference Learning Chapter 5

[106]

We follow the epsilon-greedy policy here as well. We either explore with a probability
epsilon or exploit with a probability 1-epsilon. Let us say we select probability epsilon and
explore a new action. We explore a new action, right, and select that action:

Q ((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 (Q (4,3), right) - Q ((4,2), right)

Q ((4,2), right) = 0.8 + 0.1 (0.3 + 1(0.9) - 0.8)

= 0.8 + 0.1 (0.3 + 1(0.9) - 0.8)

 = 0.84

So, this is how we get the state-action values in SARSA. We take the action using the
epsilon-greedy policy and also, while updating the Q value, we pick up the action using the
epsilon-greedy policy.

Temporal Difference Learning Chapter 5

[107]

The following diagram explains the SARSA algorithm:

Temporal Difference Learning Chapter 5

[108]

Solving the taxi problem using SARSA
Now we will solve the same taxi problem using SARSA:

import gym
import random
env = gym.make('Taxi-v1')

Also, we will initialize the learning rate, gamma, and epsilon. Q table has a dictionary:

alpha = 0.85
gamma = 0.90
epsilon = 0.8

Q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 Q[(s,a)] = 0.0

As usual, we define an epsilon_greedy policy for exploration:

def epsilon_greedy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
Q[(state,x)])

Now, the actual SARSA algorithm comes in:

for i in range(4000):
 #We store cumulative reward of each episodes in r
 r = 0
 #Then for every iterations, we initialize the state,
 state = env.reset()
 #then we pick up the action using epsilon greedy policy
 action = epsilon_greedy(state,epsilon)
 while True:
 #Then we perform the action in the state and move the next state
 nextstate, reward, done, _ = env.step(action)
 #Then we pick up the next action using epsilon greedy policy
 nextaction = epsilon_greedy(nextstate,epsilon)
 #we calculate Q value of the previous state using our update rule
 Q[(state,action)] += alpha * (reward + gamma *
Q[(nextstate,nextaction)]-Q[(state,action)])

Temporal Difference Learning Chapter 5

[109]

 #finally we update our state and action with next action
 # and next state
 action = nextaction
 state = nextstate
 r += reward
 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

env.close()

You can run the program and see how SARSA is finding the optimal path.

The full program is given here:

#Like we did in Q learning, we import necessary libraries and initialize
environment

import gym
import random
env = gym.make('Taxi-v1')

alpha = 0.85
gamma = 0.90
epsilon = 0.8

#Then we initialize Q table as dictionary for storing the state-action
values
Q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 Q[(s,a)] = 0.0

#Now, we define a function called epsilon_greedy for performing action
#according epsilon greedy policy
def epsilon_greedy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
Q[(state,x)])

Temporal Difference Learning Chapter 5

[110]

for i in range(4000):
 #We store cumulative reward of each episodes in
 r = 0
 #Then for every iterations, we initialize the state,
 state = env.reset()
 #then we pick up the action using epsilon greedy policy
 action = epsilon_greedy(state,epsilon)
 while True:
 #Then we perform the action in the state and move the next state
 nextstate, reward, done, _ = env.step(action)
 #Then we pick up the next action using epsilon greedy policy
 nextaction = epsilon_greedy(nextstate,epsilon)
 #we calculate Q value of the previous state using our update rule
 Q[(state,action)] += alpha * (reward + gamma *
Q[(nextstate,nextaction)]-Q[(state,action)])

 #finally we update our state and action with next action
 #and next state
 action = nextaction
 state = nextstate
 r += reward
 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

env.close()

Temporal Difference Learning Chapter 5

[111]

The difference between Q learning and
SARSA
Q learning and SARSA will always be confusing for many folks. Let us break down the
differences between these two. Look at the flowchart here:

Temporal Difference Learning Chapter 5

[112]

Can you spot the difference? In Q learning, we take action using an epsilon-greedy policy
and, while updating the Q value, we simply pick up the maximum action. In SARSA, we
take the action using the epsilon-greedy policy and also, while updating the Q value, we
pick up the action using the epsilon-greedy policy.

Summary
In this chapter, we learned a different model-free learning algorithm that overcame the
limitations of the Monte Carlo methods. We saw both prediction and control methods. In
TD prediction, we updated the state-value of a state based on the next state. In terms of the
control methods, we saw two different algorithms: Q learning and SARSA.

Questions
The question list is as follows:

How does TD learning differ from the Monte Carlo method?1.
What exactly is a TD error?2.
What is the difference between TD prediction and control?3.
How to build an intelligent agent using Q learning?4.
What is the difference between Q learning and SARSA?5.

Further reading
Sutton's original TD
paper: https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d72691
95.pdf

https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d7269195.pdf
https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d7269195.pdf

6
Multi-Armed Bandit Problem

In the previous chapters, we have learned about fundamental concepts of reinforcement
learning (RL) and several RL algorithms, as well as how RL problems can be modeled as
the Markov Decision Process (MDP). We have also seen different model-based and model-
free algorithms that are used to solve the MDP. In this chapter, we will see one of the
classical problems in RL called the multi-armed bandit (MAB) problem. We will see what
the MAB problem is and how to solve the problem with different algorithms followed by
how to identify the correct advertisement banner that will receive most of the clicks using
MAB. We will also learn about contextual bandit that is widely used for building
recommendation systems.

In the chapter, you will learn about the following:

The MAB problem
The epsilon-greedy algorithm
The softmax exploration algorithm
The upper confidence bound algorithm
The Thompson sampling algorithm
Applications of MAB
Identifying the right advertisement banner using MAB
Contextual bandits

The MAB problem
The MAB problem is one of the classical problems in RL. An MAB is actually a slot
machine, a gambling game played in a casino where you pull the arm (lever) and get a
payout (reward) based on a randomly generated probability distribution. A single slot
machine is called a one-armed bandit and, when there are multiple slot machines it is called
multi-armed bandits or k-armed bandits.

Multi-Armed Bandit Problem Chapter 6

[114]

MABs are shown as follows:

As each slot machine gives us the reward from its own probability distribution, our goal is
to find out which slot machine will give us the maximum cumulative reward over a
sequence of time. So, at each time step t, the agent performs an action at, that is, pulls an
arm from the slot machine and receives a reward rt, and the goal of our agent is to maximize
the cumulative reward.

We define the value of an arm Q(a) as average rewards received by pulling the arm:

So the optimal arm is the one that gives us the maximum cumulative reward, that is:

The goal of our agent is to find the optimal arm and also to minimize the regret, which can
be defined as the cost of knowing which of the k arms is optimal. Now, how do we find the
best arm? Should we explore all the arms or choose the arm that already gave us a
maximum cumulative reward? Here comes the exploration-exploitation dilemma. Now we
will see how to solve this dilemma using various exploration strategies as follows:

Epsilon-greedy policy
Softmax exploration
Upper confidence bound algorithm
Thomson sampling technique

Multi-Armed Bandit Problem Chapter 6

[115]

Before going ahead, let us install bandit environments in the OpenAI Gym; you can install
the bandit environment by typing the following command in your Terminal:

git clone https://github.com/JKCooper2/gym-bandits.git
cd gym-bandits
pip install -e .

After installing, let us import gym and gym_bandits:

import gym_bandits
import gym

Now we will initialize the environment; we use an MAB with ten arms:

env = gym.make("BanditTenArmedGaussian-v0")

 Our action space will be 10, as we have 10 arms:

env.action_space

The output is as follows:

10

The epsilon-greedy policy
We have already learned a lot about the epsilon-greedy policy. In the epsilon-greedy policy,
either we select the best arm with a probability 1-epsilon or we select the arms at random
with a probability epsilon:

https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg

Multi-Armed Bandit Problem Chapter 6

[116]

Now we will see how to select the best arm using the epsilon-greedy policy:

First, let us initialize all variables:1.

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now we define our epsilon_greedy function:2.

def epsilon_greedy(epsilon):
 rand = np.random.random()
 if rand < epsilon:
 action = env.action_space.sample()
 else:
 action = np.argmax(Q)
 return action

Start pulling the arm:3.

for i in range(num_rounds):
 # Select the arm using epsilon greedy
 arm = epsilon_greedy(0.5)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]

print('The optimal arm is {}'.format(np.argmax(Q)))

The following is the output:

The optimal arm is 3

Multi-Armed Bandit Problem Chapter 6

[117]

The softmax exploration algorithm
Softmax exploration, also known as Boltzmann exploration, is another strategy used for
finding an optimal bandit. In the epsilon-greedy policy, we consider all of the non-best
arms equivalently, but in softmax exploration, we select an arm based on a probability from
the Boltzmann distribution. The probability of selecting an arm is given by:

 is called a temperature factor, which specifies how many random arms we can explore.
When is high, all arms will be explored equally, but when is low, high-rewarding arms
will be chosen. Look at the following steps:

First, initialize the variables:1.

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now we define the softmax function:2.

def softmax(tau):
 total = sum([math.exp(val/tau) for val in Q])
 probs = [math.exp(val/tau)/total for val in Q]
 threshold = random.random()
 cumulative_prob = 0.0
 for i in range(len(probs)):
 cumulative_prob += probs[i]
 if (cumulative_prob > threshold):
 return i
 return np.argmax(probs)

Multi-Armed Bandit Problem Chapter 6

[118]

Start pulling the arm:3.

for i in range(num_rounds):
 # Select the arm using softmax
 arm = softmax(0.5)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]
print('The optimal arm is {}'.format(np.argmax(Q)))

The following is the output:

The optimal arm is 3

The upper confidence bound algorithm
With epsilon-greedy and softmax exploration, we explore random actions with a
probability; the random action is useful for exploring various arms, but it might also lead
us to try out actions that will not give us a good reward at all. We also don't want to miss
out arms that are actually good but give poor rewards in the initial rounds. So we use a
new algorithm called the upper confidence bound (UCB). It is based on the principle called
optimism in the face of uncertainty.

The UCB algorithm helps us in selecting the best arm based on a confidence interval. Okay,
what is a confidence interval? Let us say we have two arms. We pull both of these arms and
find that arm one gives us 0.3 rewards and arm two gives us 0.8 rewards. But with one
round of pulling the arms, we should not come to the conclusion that arm two will give us
the best reward. We have to try pulling the arms several times and take the mean value of
rewards obtained by each arm and select the arm whose mean is highest. But how can we
find the correct mean value for each of these arms? Here is where the confidence interval
comes into the picture. The confidence interval specifies the interval within which the mean
reward value of arms lies. If the confidence interval of arm one is [0.2, 0.9], it implies that
the mean value of arm one lies within this interval, 0.2 to 0.9. 0.2 is called the lower
confidence bound and 0.9 is called the UCB. The UCB selects a machine that has a high
UCB to explore.

Multi-Armed Bandit Problem Chapter 6

[119]

Let us say we have three slot machines and we have played each of the slot machines ten
times. The confidence intervals of these three slot machines are shown in the following
diagram:

We can see that slot machine 3 has a high UCB. But we should not come to the conclusion
that slot machine 3 will give us a good reward by just pulling ten times. Once we pull the
arms several times, our confidence interval will be accurate. So, over time, the confidence
interval becomes narrow and shrinks to an actual value, as shown in the next diagram. So
now, we can select slot machine 2, which has a high UCB:

The idea behind UCB is very simple:

Select the action (arm) that has a high sum of average reward and upper1.
confidence bound
Pull the arm and receive a reward2.
Update the arm's reward and confidence bound3.

Multi-Armed Bandit Problem Chapter 6

[120]

But how do we calculate UCB?

We can calculate UCB using the formula where N(a) is the number of times the arm
was pulled and t is the total number of rounds.

So, in UCB, we select an arm with the following formula:

First, initialize the variables:

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now, let us define our UCB function:

def UCB(iters):
 ucb = np.zeros(10)
 #explore all the arms
 if iters < 10:
 return i
 else:
 for arm in range(10):
 # calculate upper bound
 upper_bound = math.sqrt((2*math.log(sum(count))) / count[arm])
 # add upper bound to the Q value
 ucb[arm] = Q[arm] + upper_bound
 # return the arm which has maximum value
 return (np.argmax(ucb))

Multi-Armed Bandit Problem Chapter 6

[121]

Let us start pulling the arms:

for i in range(num_rounds):
 # Select the arm using UCB
 arm = UCB(i)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]
print('The optimal arm is {}'.format(np.argmax(Q)))

The output is as follows:

The optimal arm is 1

The Thompson sampling algorithm
Thompson sampling (TS) is another popularly used algorithm to overcome the
exploration-exploitation dilemma. It is a probabilistic algorithm and is based on a prior
distribution. The strategy behind TS is very simple: first, we calculate prior on the mean
rewards for each of the k arms, that is, we take some n samples from each of the k arms and
calculate k distributions. These initial distributions will not be the same as the true
distribution, so we call it prior distribution:

Since we have Bernoulli rewards, we use beta distribution for calculating the prior. The
value of beta distribution [alpha, beta] lies within the interval [0,1]. Alpha represents the
number of times we receive the positive rewards and beta represents the number of times
we receive the negative rewards.

Multi-Armed Bandit Problem Chapter 6

[122]

Now we will see how TS helps us in selecting the best arm. The steps involved in TS are as
follows:

Sample a value from each of the k distributions and use this value as a prior1.
mean.
Select the arm that has the highest prior mean and observes the reward.2.
Use the observed reward to modify the prior distribution.3.

So, after several rounds, a prior distribution will start resembling the true distribution:

We shall better understand TS by implementing it in Python. First, let us initialize the
variables:

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

initialize alpha and beta values
alpha = np.ones(10)
beta = np.ones(10)

Multi-Armed Bandit Problem Chapter 6

[123]

Define our thompson_sampling function:

def thompson_sampling(alpha,beta):
 samples = [np.random.beta(alpha[i]+1,beta[i]+1) for i in range(10)]

 return np.argmax(samples)

Start playing with the bandits using TS:

for i in range(num_rounds):

 # Select the arm using thompson sampling
 arm = thompson_sampling(alpha,beta)

 # Get the reward
 observation, reward, done, info = env.step(arm)

 # update the count of that arm
 count[arm] += 1

 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward

 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]

 # If it is a positive reward increment alpha
 if reward >0:
 alpha[arm] += 1

 # If it is a negative reward increment beta
 else:
 beta[arm] += 1

print('The optimal arm is {}'.format(np.argmax(Q)))

The output is as follows:

The optimal arm is 3

Applications of MAB
So far, we have looked at the MAB problem and how we can solve it using various
exploration strategies. But bandits are not just used for playing slot machines; they have
many applications.

Multi-Armed Bandit Problem Chapter 6

[124]

Bandits are used as a replacement for AB testing. AB testing is one of the commonly used
classical methods of testing. Say you have two versions of the landing page of your website.
How do you know which version is liked by most of the users? You conduct an AB test to
understand which version is most liked by users.

In AB testing, we allocate a separate time for exploration and a separate time for
exploitation. That is, it has two different dedicated periods only for exploration and
exploitation alone. But the problem with this method is that this will incur a lot of regrets.
So, we can minimize the regret using various exploration strategies that we use to solve
MAB. Instead of performing complete exploration and exploitation separately with bandits,
we perform both exploration and exploitation simultaneously in an adaptive fashion.

Bandits are widely used for website optimization, maximizing conversion rate, online
advertisements, campaigning, and so on. Consider you are running a short-term campaign.
If you perform AB testing here, then you will spend almost all of your time on exploring
and exploitation alone, so in this case, using bandits would be very useful.

Identifying the right advertisement banner
using MAB
Let us say you are running a website and you have five different banners for the same ad,
and you want to know which banner attracts the user. We model this problem statement as
a bandit problem. Let us say these five banners are the five arms of the bandit and we
award one point if the user clicks the ad and award zero if the user does not click the ad.

In normal A/B testing, we will perform a complete exploration of all these five banners
before deciding which banner is the best. But that will cost us a lot of energy and time.
Instead, we will use a good exploration strategy for deciding which banner will give us the
most rewards (most clicks).

First, let us import the necessary libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

Multi-Armed Bandit Problem Chapter 6

[125]

Let us simulate a dataset with 5 x 10,000 as the shape, where the column is the
Banner_type ad and the rows are either 0 or 1, that is, whether the ad has been clicked (1)
or not clicked (0) by the user respectively:

df = pd.DataFrame()
df['Banner_type_0'] = np.random.randint(0,2,100000)
df['Banner_type_1'] = np.random.randint(0,2,100000)
df['Banner_type_2'] = np.random.randint(0,2,100000)
df['Banner_type_3'] = np.random.randint(0,2,100000)
df['Banner_type_4'] = np.random.randint(0,2,100000)

Let us view a few rows of our data:

df.head()

num_banner = 5
no_of_iterations = 100000
banner_selected = []
count = np.zeros(num_banner)
Q = np.zeros(num_banner)
sum_rewards = np.zeros(num_banner)

Define an epsilon-greedy policy:

def epsilon_greedy(epsilon):
 random_value = np.random.random()
 choose_random = random_value < epsilon
 if choose_random:
 action = np.random.choice(num_banner)
 else:

Multi-Armed Bandit Problem Chapter 6

[126]

 action = np.argmax(Q)
 return action

for i in range(no_of_iterations):
 banner = epsilon_greedy(0.5)
 reward = df.values[i, banner]
 count[banner] += 1
 sum_rewards[banner]+=reward
 Q[banner] = sum_rewards[banner]/count[banner]
 banner_selected.append(banner)

We can plot the results and see which banner gives us the maximum number of clicks:

sns.distplot(banner_selected)

Contextual bandits
We just saw how bandits are used for recommending the correct ad banner to the user. But
the banner preference varies from user to user. User A likes banner type 1, but user B might
like banner type 3. So we have to personalize ad banners according to user behavior. How
can we do that? We introduce a new bandit type called contextual bandits.

Multi-Armed Bandit Problem Chapter 6

[127]

In a normal MABs problem, we perform the action and receive a reward. But with
contextual bandits, instead of just taking the actions alone, we take the environment state as
well. The state holds the context. Here, the state specifies the user behaviors, so we will take
actions (show ads) according to the state (user behavior) that will result in a maximum
reward (ad clicks). Thus, contextual bandits are widely used for personalizing content
according to the user's preference behavior. They are used to solve cold-start problems
faced in recommendation systems. Netflix uses contextual bandits for personalizing
artwork for TV shows according to user behavior.

Summary
In this chapter, we have learned about the MAB problem and how it can be applied to
different applications. We understood several methods to solve an explore-exploit
dilemma. First, we looked at the epsilon-greedy policy, where we explored with the
probability epsilon, and carried out exploration with the probability 1-epsilon. We looked
at the UCB algorithm, where we picked up the best action with the maximum upper bound
value, followed by the TS algorithm, where we picked up the best action via beta
distribution.

In the upcoming chapters, we will learn about deep learning and how deep learning is used
to solve RL problems.

Questions
The question list is as follows:

What is an MAB problem?1.
What is an explore-exploit dilemma?2.
What is the significance of epsilon in the epsilon-greedy policy?3.
How do we solve an explore-exploit dilemma?4.
What is a UCB algorithm?5.
How does Thompson sampling differ from the UCB algorithm?6.

Multi-Armed Bandit Problem Chapter 6

[128]

Further reading
You can also refer to these links:

Contextual bandits for personalization: https://www.microsoft.com/en-us/
research/blog/contextual-bandit-breakthrough-enables-deeper-
personalization/

How Netflix uses contextual bandits: https://medium.com/netflix-techblog/
artwork-personalization-c589f074ad76

Collaborative filtering using MAB: https://arxiv.org/pdf/1708.03058.pdf

https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf

7
Playing Atari Games

an a machine learn how to play video games by itself and beat human players? Solving this
problem is the first step toward general artificial intelligence (AI) in the field of gaming.
The key technique to creating an AI player is deep reinforcement learning. In 2015,
Google's DeepMind, one of the foremost AI/machine learning research teams (who are
famous for building AlphaGo, the machine that beat Go champion Lee Sedol) proposed the
deep Q-learning algorithm to build an AI player that can learn to play Atari 2600 games,
and surpass a human expert on several games. This work made a great impact on AI
research, showing the possibility of building general AI systems.

In this chapter, we will introduce how to use gym to play Atari 2600 games, and then
explain why the deep Q-learning algorithm works and how to implement it using
TensorFlow. The goal is to be able to understand deep reinforcement learning algorithms
and how to apply them to solve real tasks. This chapter will be a solid foundation to
understanding later chapters, where we will be introducing more complex methods.

The topics that we will cover in this chapter are as follows:

Introduction to Atari games
Deep Q-learning
Implementation of DQN

Playing Atari Games Chapter 7

[130]

Introduction to Atari games
Atari, Inc. was an American video game developer and home computer company founded
in 1972 by Nolan Bushnell and Ted Dabney. In 1976, Bushnell developed the Atari video
computer system, or Atari VCS (later renamed Atari 2600). Atari VCS was a flexible console
that was capable of playing the existing Atari games, which included a console, two
joysticks, a pair of paddles, and the combat game cartridge. The following screenshot
depicts an Atari console:

Atari 2600 has more than 500 games that were published by Atari, Sears, and some third
parties. Some famous games are Breakout, Pac-Man, Pitfall!, Atlantis, Seaquest, and Space
Invaders.

As a direct result of the North American video game crash of 1983, Atari, Inc. was closed
and its properties were split in 1984. The home computing and game console divisions of
Atari were sold to Jack Tramiel under the name Atari corporation in July 1984.

For readers who are interested in playing Atari games, here are several online Atari 2600
emulator websites where you can find many popular Atari 2600 games:

http://www.2600online.com/

http://www.free80sarcade.com/all2600games.php

http://www.retrogames.cz/index.php

http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.2600online.com/
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.free80sarcade.com/all2600games.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php
http://www.retrogames.cz/index.php

Playing Atari Games Chapter 7

[131]

Because our goal is to develop an AI player for these games, it is better to play with them
first and understand their difficulties. The most important thing is to: relax and have fun!

Building an Atari emulator
OpenAI gym provides an Atari 2600 game environment with a Python interface. The games
are simulated by the arcade learning environment, which uses the Stella Atari emulator. For
more details, read the following papers:

MG Bellemare, Y Naddaf, J Veness, and M Bowling, The arcade learning
environment: An evaluation platform for general agents, journal of Artificial
Intelligence Research (2012)
Stella: A Multi-Platform Atari 2600 VCS emulator, http://stella.sourceforge.
net/

Getting started
If you don't have a full install of OpenAI gym, you can install the Atari environment
dependencies via the following:

pip install gym[atari]

This requires the cmake tools. This command will automatically compile the arcade
learning environment and its Python interface, atari-py. The compilation will take a few
minutes on a common laptop, so go have a cup of coffee.

After the Atari environment is installed, try the following:

import gym
atari = gym.make('Breakout-v0')
atari.reset()
atari.render()

http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/
http://stella.sourceforge.net/

Playing Atari Games Chapter 7

[132]

If it runs successfully, a small window will pop up, showing the screen of the game
Breakout, as shown in the following screenshot:

The meaning of the v0 suffix in the Breakout rom name will be explained later. We will
use Breakout to test our algorithm for training an AI game player. In Breakout, several
layers of bricks lie on the top of the screen. A ball travels across the screen, bouncing off the
top and side walls of the screen. When a brick is hitted, the ball bounces away and the brick
is destroyed, giving the player several points according to the color of the brick. The player
loses a turn when the ball touches the bottom of the screen. In order to prevent this from
happening, the player has to move the paddle to bounce the ball back.

Atari VCS uses a joystick as the input device for controlling Atari 2600 games. The total
number of inputs that a joystick and a paddle can make is 18. In the gym Atari environment,
these actions are labeled as the integers ranged from 0 to 17. The meaning of each action is
as follows:

0 1 2 3 4 5
NO
OPERATION FIRE UP RIGHT LEFT DOWN

6 7 8 9 10 11
UP+RIGHT UP+LEFT DOWN+RIGHT DOWN+LEFT UP+FIRE RIGHT+FIRE
12 13 14 15 16 17
LEFT+FIRE DOWN+FIRE UP+RIGHT+FIRE UP+LEFT+FIRE DOWN+RIGHT+FIRE DOWN+LEFT+FIRE

One can use the following code to get the meanings of the valid actions for a game:

actions = atari.env.get_action_meanings()

For Breakout, the actions include the following:

[0, 1, 3, 4] or ['NOOP', 'FIRE', 'RIGHT', 'LEFT']

Playing Atari Games Chapter 7

[133]

To get the number of the actions, one can also use the following:

num_actions = atari.env.action_space.n

Here, the member variable, action_space, in atari.env stores all the information about
the valid actions for a game. Typically, we only need to know the total number of valid
actions.

We now know how to access the action information in the Atari environment. But, how do
you control the game given these actions? To take an action, one can call the step function:

observation, reward, done, info = atari.step(a)

The input argument, a, is the action you want to execute, which is the index in the valid
action list. For example, if one wants to take the LEFT action, the input should be 3 not 4, or
if one takes no action, the input should be 0. The step function returns one of the following
four values:

Observation: An environment-specific object representing your observation of
the environment. For Atari, it is the screen image of the frame after the action is
executed.
Reward: The amount of reward achieved by the action.
Done: Whether it's time to reset the environment again. In Atari, if you lost your
last life, done will be true, otherwise it is false.
Info: Diagnostic information useful for debugging. It is not allowed to use this
information in the learning algorithm, so usually we can ignore it.

Implementation of the Atari emulator
We are now ready to build a simple Atari emulator using gym. As with other computer
games, the keyboard input used to control Atari games is as shown here:

w a s d space
UP LEFT DOWN RIGHT FIRE

To detect the keyboard inputs, we use the pynput.keyboard package, which allows us to
control and monitor the keyboard (http://pythonhosted.org/pynput/). If the pynput
package is not installed, run the following:

pip install pynput

http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/
http://pythonhosted.org/pynput/

Playing Atari Games Chapter 7

[134]

pynput.keyboard provides a keyboard listener used to capture keyboard events. Before
creating a keyboard listener, the Listener class should be imported:

import gym
import queue, threading, time
from pynput.keyboard import Key, Listener

Besides the Listener class, the other packages, such as gym and threading, are also
necessary in this program.

The following code shows how to use Listener to capture keyboard inputs, that is, where
one of the w, a, s, d, and space keys is pressed:

def keyboard(queue):
 def on_press(key):
 if key == Key.esc:
 queue.put(-1)
 elif key == Key.space:
 queue.put(ord(' '))
 else:
 key = str(key).replace("'", '')
 if key in ['w', 'a', 's', 'd']:
 queue.put(ord(key))

 def on_release(key):
 if key == Key.esc:
 return False

 with Listener(on_press=on_press, on_release=on_release) as listener:
 listener.join()

Actually, a keyboard listener is a Python threading.Thread object, and all callbacks will
be invoked from the thread. In the keyboard function, the listener registers two
callbacks: on_press , which is invoked when a key is pressed and on_release invoked
when a key is released. This function uses a synchronized queue to share data between
different threads. When w, a, s, d, or space is pressed, its ASCII value is sent to the queue,
which can be accessed from another thread. If esc is pressed, a termination signal, -, is sent
to the queue. Then, the listener thread stops when esc is released.

Starting a keyboard listener has some restrictions on macOS X; that is, one of the following
should be true:

The process must run as root
The application must be white-listed under enable access for assistive devices

For more information, visit https://pythonhosted.org/pynput/keyboard.html.

https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html
https://pythonhosted.org/pynput/keyboard.html

Playing Atari Games Chapter 7

[135]

Atari simulator using gym
The other part of the emulator is the gym Atari simulator:

def start_game(queue):
 atari = gym.make('Breakout-v0')
 key_to_act = atari.env.get_keys_to_action()
 key_to_act = {k[0]: a for k, a in key_to_act.items() if len(k) > 0}
 observation = atari.reset()
 import numpy
 from PIL import Image
 img = numpy.dot(observation, [0.2126, 0.7152, 0.0722])
 img = cv2_resize_image(img)
 img = Image.fromarray(img)
 img.save('save/{}.jpg'.format(0))
 while True:
 atari.render()
 action = 0 if queue.empty() else queue.get(block=False)
 if action == -1:
 break
 action = key_to_act.get(action, 0)
 observation, reward, done, _ = atari.step(action)
 if action != 0:
 print("Action {}, reward {}".format(action, reward))
 if done:
 print("Game finished")
 break
 time.sleep(0.05)

The first step is to create an Atari environment using gym.make. If you are interested in
playing other games such as Seaquest or Pitfall, just change Breakout-v0 to Seaquest-v0 or
Pitfall-v0. Then, get_keys_to_action is called to get the key to action mapping,
which maps the ASCII values of w, a, s, d, and space to internal actions. Before the Atari
simulator starts, the reset function must be called to reset the game parameters and
memory, returning the first game screen image. In the main loop, render is called to
render the Atari game at each step. The input action is pulled from the queue without
blocking. If the action is the termination signal, -1, the game quits. Otherwise, this action is
taken at the current step by running atari.step.

To start the emulator, run the following code:

if __name__ == "__main__":
 queue = queue.Queue(maxsize=10)
 game = threading.Thread(target=start_game, args=(queue,))
 game.start()
 keyboard(queue)

Playing Atari Games Chapter 7

[136]

Press the fire button to start the game and enjoy it! This emulator provides a basic
framework for testing AI algorithms on the gym Atari environment. Later, we will replace
the keyboard function with our AI player.

Data preparation
Careful readers may notice that a suffix, v0, follows each game name, and come up with the
following questions: What is the meaning of v0? Is it allowable to replace it with v1 or v2?
Actually, this suffix has a relationship with the data preprocessing step for the screen
images (observations) extracted from the Atari environment.

There are three modes for each game, for example, Breakout, BreakoutDeterministic, and
BreakoutNoFrameskip, and each mode has two versions, for example, Breakout-v0 and
Breakout-v4. The main difference between the three modes is the value of the frameskip
parameter in the Atari environment. This parameter indicates the number of frames (steps)
the one action is repeated on. This is called the frame-skipping technique, which allows us
to play more games without significantly increasing the runtime.

For Breakout, frameskip is randomly sampled from 2 to 5. The following screenshots show
the frame images returned by the step function when the action LEFT is submitted:

For BreakoutDeterministic, frameskip is set to 3 for the game Space Invaders, and 4 for the
other games. With the same LEFT action, the step function returns the following:

Playing Atari Games Chapter 7

[137]

For BreakoutNoFrameskip, frameskip is always 1 for all of the games, meaning no frame-
skipping. Similarly, the LEFT action is taken at each step:

These screenshots demonstrate that although the step function is called four times with the
same action, LEFT, the final positions of the paddle are quite different. Because frameskip is
4 for BreakoutDeterministic, its paddle is the closest one to the left wall. For
BreakoutNoFrameskip, frameskip is set to 1 so that its paddle is farthest from the left wall.
For Breakout, its paddle lies in the middle because of frameskip being sampled from [2, 5]
at each step.

From this simple experiment, we can see the effect of the frameskip parameter. Its value is
usually set to 4 for fast learning. Recall that there are two versions, v0 and v4, for each
mode. Their main difference is the repeat_action_probability parameter. This
parameter indicates the probability that a no operation (NOOP) action is taken, although
another action is submitted. It is set to 0.25 for v0, and 0.0 for v4. Because we want a
deterministic Atari environment, the v4 version is selected in this chapter.

Playing Atari Games Chapter 7

[138]

If you have played some Atari games, you have probably noticed that the top region of the
screen in a game usually contains the scoreboard, showing the current score you got and
the number of lives you have. This information is not related to game playing, so that the
top region can be cropped. Besides, the frame images returned by the step function are RGB
images. Actually, in the Atari environment, colorful images do not provide more
information than grayscale images; namely, one can play Atari games as usual with a gray
screen. Therefore, it is necessary to keep only useful information by cropping frame images
and converting them to grayscale.

Converting an RGB image into a grayscale image is quite easy. The value of each pixel in a
grayscale image represents the light intensity, which can be calculated by this formula:

Here, R, G, and B are the red, green, and blue channels of the RGB image, respectively.
Given a RGB image with shape (height, width, channel), the following Python code can be
used to convert it into grayscale:

def rgb_to_gray(self, im):
 return numpy.dot(im, [0.2126, 0.7152, 0.0722])

The following image gives an example:

For cropping frame images, we use the opencv-python package or cv2, a Python wrapper
around the original C++ OpenCV implementation. For more information, please visit the
opencv-python website at http://opencv-python-tutroals.readthedocs.io/en/
latest/index.html. The opencv-python package provides basic image transformation
operations such as image scaling, translation, and rotation. In this chapter, we only need the
image scaling function resize, which takes the input image, image size, and interpolation
method as the input arguments, and returns the resized image.

http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html
http://opencv-python-tutroals.readthedocs.io/en/latest/index.html

Playing Atari Games Chapter 7

[139]

The following code shows the image cropping operation, which involves two steps:

Reshaping the input image such that the width of the resulting image equals the1.
resized width, 84, indicated by the resized_shape parameter.
Cropping the top region of the reshaped image using numpy slicing:2.

def cv2_resize_image(image, resized_shape=(84, 84),
 method='crop', crop_offset=8):
 height, width = image.shape
 resized_height, resized_width = resized_shape
 if method == 'crop':
 h = int(round(float(height) * resized_width / width))
 resized = cv2.resize(image,
 (resized_width, h),
 interpolation=cv2.INTER_LINEAR)
 crop_y_cutoff = h - crop_offset - resized_height
 cropped =
resized[crop_y_cutoff:crop_y_cutoff+resized_height, :]
 return numpy.asarray(cropped, dtype=numpy.uint8)
 elif method == 'scale':
 return numpy.asarray(cv2.resize(image,
 (resized_width,
resized_height),
interpolation=cv2.INTER_LINEAR),
 dtype=numpy.uint8)
 else:
 raise ValueError('Unrecognized image resize method.')

For example, given a grayscale input image, the cv2_resize_image function returns a
cropped image with size , as shown in the following screenshot:

Playing Atari Games Chapter 7

[140]

So far, we have finished the data preparation. The data is now ready to be used to train our
AI player.

Deep Q-learning
Here comes the fun part—the brain design of our AI Atari player. The core algorithm is
based on deep reinforcement learning or deep RL. In order to understand it better, some
basic mathematical formulations are required. Deep RL is a perfect combination of deep
learning and traditional reinforcement learning. Without understanding the basic concepts
about reinforcement learning, it is difficult to apply deep RL correctly in real applications,
for example, it is possible that someone may try to use deep RL without defining state
space, reward, and transition properly.

Well, don't be afraid of the difficulty of the formulations. We only need high school-level
mathematics, and will not go deep into the mathematical proofs of why traditional
reinforcement learning algorithms work. The goal of this chapter is to learn the basic Q-
learning algorithm, to know how to extend it into the deep Q-learning algorithm (DQN),
and to understand the intuition behind these algorithms. Besides, you will also learn what
the advantages and disadvantages are of DQN, what exploration and exploitation are, why
a replay memory is necessary, why a target network is needed, and how to design a
convolutional neural network for state feature representation.

It looks quite interesting, doesn't it? We hope this chapter not only helps you to understand
how to apply deep reinforcement learning to solve practical problems, but also opens a
door for deep reinforcement learning research. For the readers who are familiar with
convolutional neural networks, the Markov decision process, and Q-learning, skip the first
section and go directly to the implementation of DQN.

Basic elements of reinforcement learning
First, let's us recall some basic elements of reinforcement learning that we discussed in the
first chapter:

State: The state space defines all the possible states of the environment. In Atari
games, a state is a screen image or a set of several consecutive screen images
observed by the player at a given time, indicating the game status of that
moment.

Playing Atari Games Chapter 7

[141]

Reward function: A reward function defines the goal of a reinforcement learning
problem. It maps a state or a state-action pair of the environment to a real
number, indicating the desirability of that state. The reward is the score received
after taking a certain action in Atari games.
Policy function: A policy function defines the behavior of the player at a given
time, which maps the states of the environment to actions to be taken in those
states.
Value function: A value function indicates which state or state-action pair is
good in the long run. The value of a state is the total (or discounted) amount of
reward a player can expect to accumulate over the future, starting from that
state.

Demonstrating basic Q-learning algorithm
To demonstrate the basic Q-learning algorithm, let's consider a simple problem. Imagine
that our agent (player) lives in a grid world. One day, she was trapped in a weird maze, as
shown in the following diagram:

The maze contains six rooms. Our agent appears in Room 1, while she has no knowledge
about the maze, that is, she doesn't know Room 6 has the sweetheart that is able to send her
back home, or that Room 4 has a lightning bolt that strikes her. Therefore, she has to
explore the maze carefully to escape as soon as possible. So, how do we make our lovely
agent learn from experience?

Playing Atari Games Chapter 7

[142]

Fortunately, her good friend Q-learning can help her survive. This problem can be
represented as a state diagram, where each room is taken as a state and her movement from
one room to another is considered as an action. The state diagram is as follows:

Here, an action is represented by an arrow and the number associated with an arrow is the
reward of that state-action pair. For example, when our agent moves from Room 5 to Room
6, she gets 100 points because of achieving the goal. When she moves from Room 3 to Room
4, she get a negative reward because the lightning strike hurts her. This state diagram can
also be represented by a matrix:

state\action 1 2 3 4 5 6
1 - 0 - - - -
2 0 - 0 - 0 -
3 - 0 - -50 - -
4 - - 0 - - -
5 - 0 - - - 100
6 - - - - - -

The dash line in the matrix indicates that the action is not available in that state. For
example, our agent cannot move from Room 1 to Room 6 directly because there is no door
connecting them.

Playing Atari Games Chapter 7

[143]

Let's be a state, be an action, be the reward function, and be the value
function. Recall that is the desirability of the state-action pair in the long run,
meaning that our agent is able to make decisions about which room she enters based on

. The Q-learning algorithm is very simple, which estimates for each state-action
pair via the following update rule:

Here, is the current state, is the next state after taking action at , is the set
of the available actions at , is the discount factor, and is the learning rate. The
discount factor lies in [0,1]. A discount factor smaller than 1 means that our agent prefers
the current reward more than past rewards.

In the beginning, our agent knows nothing about the value function, so is initialized
to 0 for all state-action pairs. She will explore from state to state until she reaches the goal.
We call each exploration an episode, which consists of moving from the initial state (for
example, Room 1) to the final state (for example, Room 6). The Q-learning algorithm is
shown as follows:

Initialize to zero and set parameters , ;
Repeat for each episode:
 Randomly select an initial state ;
 While the goal state hasn't been reached:
 Select action among all the possible actions in state (e.g.,

using greedy);
 Take action and observe reward , next state ;

 Update ;
 Set the current state ;
 End while

A careful reader may ask a question about how to select action in state , for example, is
action randomly selected among all the possible actions or chosen using the policy
derived from the current estimated value function, ? What is greedy? These questions
are related to two important concepts, namely, exploration and exploitation. Exploration
means trying something new to gather more information about the environment, while
exploitation means making the best decision based on all the information you have. For
example, trying a new restaurant is exploration and going to your favorite restaurant is
exploitation. In our maze problem, the exploration is that our agent tries to enter a new
room she hasn't visited before, while the exploitation is that she chooses her favorite room
based on the information she gathered from the environment.

Playing Atari Games Chapter 7

[144]

Both exploration and exploitation are necessary in reinforcement learning. Without
exploration, our agent is not able to get new knowledge about the environment, so she will
make bad decisions again and again. Without exploitation, the information she got from
exploration becomes meaningless since she doesn't learn from it to better make a decision.
Therefore, a balance or a trade-off between exploration and exploitation is indispensable.

greedy is the simplest way to make such a trade-off:

With probability Randomly select an action among all the possible actions

With probability Select the best action based on ,that is, pick so that is the
largest among all the possible actions in state

To further understand how Q-learning works, let's go through several steps by hand. For
clarity, let's set the learning rate and discount factor . The following code
shows the implementation of Q-learning in Python:

import random, numpy

def Q_learning_demo():
 alpha = 1.0
 gamma = 0.8
 epsilon = 0.2
 num_episodes = 100
 R = numpy.array([
 [-1, 0, -1, -1, -1, -1],
 [0, -1, 0, -1, 0, -1],
 [-1, 0, -1, -50, -1, -1],
 [-1, -1, 0, -1, -1, -1],
 [-1, 0, -1, -1, -1, 100],
 [-1, -1, -1, -1, -1, -1]
])
 # Initialize Q
 Q = numpy.zeros((6, 6))
 # Run for each episode
 for _ in range(num_episodes):
 # Randomly choose an initial state
 s = numpy.random.choice(5)
 while s != 5:
 # Get all the possible actions
 actions = [a for a in range(6) if R[s][a] != -1]
 # Epsilon-greedy
 if numpy.random.binomial(1, epsilon) == 1:
 a = random.choice(actions)
 else:
 a = actions[numpy.argmax(Q[s][actions])]
 next_state = a
 # Update Q(s,a)

Playing Atari Games Chapter 7

[145]

 Q[s][a] += alpha * (R[s][a] + gamma * numpy.max(Q[next_state])
- Q[s][a])
 # Go to the next state
 s = next_state
 return Q

After running for 100 episodes, the value function, , converges to the following(for the
readers who are curious about why this algorithm converges, refer to Reinforcement
Learning: An Introduction by Andrew Barto and Richard S. Sutton):

state\action 1 2 3 4 5 6
1 - 64 - - - -
2 51.2 - 51.2 - 80 -
3 - 64 - -9.04 - -
4 - - 51.2 - - -
5 - 64 - - - 100
6 - - - - - -

Therefore, the resulting state diagram becomes this:

This indicates the following optimal paths to the goal state for all the other states:

Based on this knowledge, our agent is able to go back home no matter which room she is in.
More importantly, she becomes smarter and happier, achieving our goal to train a smart AI
agent or player.

Playing Atari Games Chapter 7

[146]

This simplest Q-learning algorithm can only handle discrete states and actions. For
continuous states, it fails because the convergence is not guaranteed due to the existence of
infinite states. How can we apply Q-learning in an infinite state space such as Atari games?
The answer is replacing the tableau with neural networks to approximate the action-value
function . This is the intuition behind the Playing Atari with deep reinforcement learning,
by Google DeepMind paper.

To extend the basic Q-learning algorithm into the deep Q-learning algorithm, there are two
key questions that need to be answered:

What kind of neural networks can be used to extract high-level features from1.
observed data such as screen images in the Atari environment?
How can we update the action-value function, , at each training step?2.

For the first question, there are several possible ways of approximating the action-value
function, . One approach is that both the state and the action are used as the inputs to
the neural network, which outputs the scalar estimates of their Q-value, as shown in the
following diagram:

The main disadvantage of this approach is that an additional forward pass is required to
compute as the action is taken as one of the inputs to the network, resulting in a cost
that scales linearly with the number of all the possible actions. Another approach is that the
state is the only input to the neural network, while there is a separate output for each
possible action:

Playing Atari Games Chapter 7

[147]

The main advantage of this approach is the ability to compute Q-values for all possible
actions in a given state with only a single forward pass through the network, and the
simplicity to access the Q-value for an action by picking the corresponding output head.

In the deep Q-network, the second architecture is applied. Recall that the output in the data
preprocessing step is an grayscale frame image. However, the current screen is not
enough for playing Atari games because it doesn't contain the dynamic information about
game status. Take Breakout as an example; if we only see one frame, we can only know the
locations of the ball and the paddle, but we cannot know the direction or the velocity of the
ball. Actually, the direction and the velocity are quite important for making decisions about
how to move the paddle. Without them, the game is unplayable. Therefore, instead of
taking only one frame image as the input, the last four frame images of a history are
stacked together to produce the input to the neural network. These four frames form an

 image. Besides the input layer, the Q-network contains three convolutional
layers and one fully connected layer, which is shown as follows:

The first convolutional layer has 64 filters with stride 4, followed by a rectifier
nonlinearity (RELU). The second convolutional layer has 64 filters with stride 2,
followed by RELU. The third convolutional layer has 64 filters with stride 2, followed
by RELU. The fully connected hidden layer has 512 hidden units, again followed by RELU.
The output layer is also a fully connected layer with a single output for each action.

Playing Atari Games Chapter 7

[148]

Readers who are familiar with convolutional neural networks may ask why the first
convolutional layer uses a filter, instead of a filter or a filter that is widely
applied in computer vision applications. The main reason of using a big filter is that Atari
games usually contain very small objects such as a ball, a bullet, or a pellet. A convolutional
layer with larger filters is able to zoom in on these small objects, providing benefits for
learning feature representations of states. For the second and third convolutional layers, a
relatively small filter is enough to capture useful features.

So far, we have discussed the architecture of the Q-network. But, how do we train this Q-
network in the Atari environment with an infinite state space? Is it possible to develop an
algorithm based on the basic Q-learning to train it? Fortunately, the answer is YES. Recall
that the update rule for in basic Q-learning is as follows:

When the learning rate , this update rule becomes as follows:

This is called the Bellman equation. Actually, the Bellman equation is the backbone of
many reinforcement learning algorithms. The algorithms using the Bellman equation as an
iterative update are called value iteration algorithms. In this book, we will not go into
detail about value iteration or policy iteration. If you are interested in them, refer to
Reinforcement Learning: An Introduction, by Andrew Barto and Richard S. Sutton.

The equation just shown is only suitable for a deterministic environment where the next
state is fixed given the current state and the action . In a nondeterministic
environment, the Bellman equation should be as follows:

Here, the right-hand side takes the expectation of with respect to the
next state (for example, the distribution of is determined by the Atari emulator). For
an infinite state space, it is common to use a function approximator such as the Q-network
to estimate the action-value function . Then, instead of iteratively updating , the
Q-network can be trained by minimizing the following loss function at the ith iteration:

Playing Atari Games Chapter 7

[149]

Here, Q(s,a;) represents the Q-network parameterized by,
 is the target for the ith iteration, and is a

probability distribution over sequences and actions. The parameters from the previous
iteration i-1 are fixed when optimizing the loss function over . In practice, it is
impossible to exactly calculate the expectations in . Instead of optimizing
 directly, we minimize the empirical loss of , which replaces the expectations by
samples from the probability distribution and the Atari emulator. As with
other deep learning algorithms, the empirical loss function can be optimized by stochastic
gradient descent.

This algorithm doesn't need to construct an estimate of the emulator, for example, it doesn't
need to know the internal game mechanism about the Atari emulator, because it only uses
samples from the emulator to solve the reinforcement learning problem. This property is
called model-free, namely, it can treat the underlying model as a black box. Another
property of this algorithm is off-policy. It learns about the greedy policy

 while following the probability distribution that balances
exploration and exploitation of the state space. As discussed previously, can be
selected as an greedy strategy.

The derivation of the deep Q-learning algorithm may be a little bit difficult for readers who
are not familiar with reinforcement learning or the Markov decision process. In order to
make it more understandable, let's see the following diagram:

Playing Atari Games Chapter 7

[150]

The brain of our AI player is the Q-network controller. At each time step t, she observes the
screen image (recall that st is an image that stacks the last four frames). Then,
her brain analyzes this observation and comes up with an action, . The Atari emulator
receives this action and returns the next screen image, , and the reward, . The
quadruplet is stored in the memory and is taken as a sample for training the
Q-network by minimizing the empirical loss function via stochastic gradient descent.

How do we draw samples from the quadruplets stored in the memory? One approach is
that these samples, , are drawn from our AI player's interactions with the
environment, for example, samples

 are used to train
the Q-network. The main drawback of this approach is that the samples in one batch are
strongly correlated. The strong correlation breaks the assumption that the samples for
constructing the empirical loss function are independent, making the training procedure
unstable and leading to bad performance:

The deep Q-learning algorithm applies another approach, utilizing a technique known as
experience replay. The AI player's experiences at each time step are stored
into the replay memory from which a batch of samples are randomly drawn in order to
train the Q-network. Mathematically, we cannot guarantee the independence between the
samples we drew. But practically, this approach can stabilize the training procedure and
generate reasonable results:

Playing Atari Games Chapter 7

[151]

So far, we have discussed all the components in the deep Q-learning algorithm. The full
algorithm is shown as follows:

Initialize replay memory to capacity ;
Initialize the Q-network with random weights ;
Repeat for each episode:
 Set time step ;
 Receive an initial screen image and do preprocessing ;
 While the terminal state hasn't been reached:
 Select an action at via greedy, i.e., select a random action with

probability , otherwise select ;
 Execute action at in the emulator and observe reward and image

;

 Set and store transition into replay
memory ;
 Randomly sample a batch of transitions from ;

 Set if is a terminal state or if is a
non-terminal state;

 Perform a gradient descent step on ;
 End while

This algorithm works well for some Atari games, for example, Breakout, Seaquest, Pong,
and Qbert, but it still cannot reach human-level control. One drawback is that computing
the targets uses the current estimate of the action-value function , which makes the
training step unstable, that is, an update that increases usually also increases
for all and hence also increases the target , possibly leading to oscillations or divergence
of the policy.

Playing Atari Games Chapter 7

[152]

To address this problem, Google DeepMind introduced the target network in their paper,
Human-level control through deep reinforcement learning, which was published in Nature. The
idea behind the target network is quite simple: a separate network is used for generating
the targets in the Q-learning update. More precisely, for every Q-learning updates, the
network Q is cloned to obtain a target network Q, which is used for generating the targets

 in the following updates to Q. Therefore, the deep Q-learning algorithm becomes as
follows:

Initialize replay memory to capacity ;
Initialize the Q-network with random weights ;
Initialize the target network with weights ;
Repeat for each episode:

Set time step ;

 Receive an initial screen image and do preprocessing ;
 While the terminal state hasn't been reached:
 Select an action at via greedy, i.e., select a random action with

probability , otherwise select ;
 Execute action at in the emulator and observe reward and image

;

 Set and store transition into replay memory
;

 Randomly sample a batch of transitions from ;

 Set if is a terminal state or if is a
non-terminal state;

 Perform a gradient descent step on ;

 Set for every steps;
 End while

With the target network, the AI player trained by the deep Q-learning algorithm is able to
surpass the performance of most previous reinforcement learning algorithms and achieves
a human-level performance across a set of 49 Atari 2600 games, for example, Star Gunner,
Atlantis, Assault, and Space Invaders.

Playing Atari Games Chapter 7

[153]

The deep Q-learning algorithm has made an important step toward general artificial
intelligence. Although it performs well in the Atari 2600 games, it still has a lot of unsolved
issues:

Slow convergence: It requires a long time (7 days on one GPU) to reach human-
level performance
Failing with sparse rewards: It doesn't work for the game Montezuma's
Revenge, which requires long-term planning
Need for a large amount of data: This is a common issue among most
reinforcement learning algorithms

In order to solve these issues, different variants of the deep Q-learning algorithm have been
proposed recently, for example, double Q-learning, prioritized experience replay,
bootstrapped DQN, and dueling network architectures. We will not discuss these
algorithms in this book. For readers who want to learn more about DQN, please refer to the
related papers.

Implementation of DQN
This chapter will show you how to implement all the components, for example, Q-network,
replay memory, trainer, and Q-learning optimizer, of the deep Q-learning algorithm with
Python and TensorFlow.

We will implement the QNetwork class for the Q-network that we discussed in the
previous chapter, which is defined as follows:

class QNetwork:
 def __init__(self, input_shape=(84, 84, 4), n_outputs=4,
 network_type='cnn', scope='q_network'):
 self.width = input_shape[0]
 self.height = input_shape[1]
 self.channel = input_shape[2]
 self.n_outputs = n_outputs
 self.network_type = network_type
 self.scope = scope
 # Frame images
 self.x = tf.placeholder(dtype=tf.float32,
 shape=(None, self.channel,
 self.width, self.height))
 # Estimates of Q-value
 self.y = tf.placeholder(dtype=tf.float32, shape=(None,))
 # Selected actions
 self.a = tf.placeholder(dtype=tf.int32, shape=(None,))

Playing Atari Games Chapter 7

[154]

 with tf.variable_scope(scope):
 self.build()
 self.build_loss()

The constructor requires four arguments, input_shape, n_outputs, network_type and
scope. input_shape is the size of the input image. After data preprocessing, the input is
an image, so that the default parameter is . n_outputs is the number of
all the possible actions, for example, n_outputs is four in Breakout.
network_type ,indicates the type of the Q-network we want to use. Our implementation
contains three different networks. Two of them are the convolutional neural networks
proposed by Google DeepMind. The other one is a feed-forward neural network used for
testing. scope is the name of the Q-network object, which can be set to q_network or
target_network.

In the constructor, three input tensors are created. The x variable represents the input state
(a batch of images). The y and a variables are the estimates of the action-value
function and the selected actions corresponding to the input state, which are used for
training the Q-network. After creating the input tensors, two functions, build and
build_loss, are called to build the Q-network.

Constructing the Q-network using TensorFlow is quite easy, as shown here:

 def build(self):
 self.net = {}
 self.net['input'] = tf.transpose(self.x, perm=(0, 2, 3, 1))
 init_b = tf.constant_initializer(0.01)
 if self.network_type == 'cnn':
 self.net['conv1'] = conv2d(self.net['input'], 32,
 kernel=(8, 8), stride=(4, 4),
 init_b=init_b, name='conv1')
 self.net['conv2'] = conv2d(self.net['input'], 64,
 kernel=(4, 4), stride=(2, 2),
 init_b=init_b, name='conv2')
 self.net['conv3'] = conv2d(self.net['input'], 64,
 kernel=(3, 3), stride=(1, 1),
 init_b=init_b, name='conv3')
 self.net['feature'] = dense(self.net['conv2'], 512,
 init_b=init_b, name='fc1')
 elif self.network_type == 'cnn_nips':
 self.net['conv1'] = conv2d(self.net['input'], 16,
 kernel=(8, 8), stride=(4, 4),
 init_b=init_b, name='conv1')
 self.net['conv2'] = conv2d(self.net['conv1'], 32,
 kernel=(4, 4), stride=(2, 2),
 init_b=init_b, name='conv2')

Playing Atari Games Chapter 7

[155]

 self.net['feature'] = dense(self.net['conv2'], 256,
 init_b=init_b, name='fc1')
 elif self.network_type == 'mlp':
 self.net['fc1'] = dense(self.net['input'], 50,
 init_b=init_b), name='fc1')
 self.net['feature'] = dense(self.net['fc1'], 50,
 init_b=init_b, name='fc2')
 else:
 raise NotImplementedError('Unknown network type')
 self.net['values'] = dense(self.net['feature'],
 self.n_outputs, activation=None,
 init_b=init_b, name='values')
 self.net['q_value'] = tf.reduce_max(self.net['values'],
 axis=1, name='q_value')
 self.net['q_action'] = tf.argmax(self.net['values'],
 axis=1, name='q_action',
 output_type=tf.int32)
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
 tf.get_variable_scope().name)

As discussed in the previous chapter, the Q-network for the Atari environment contains
three convolutional layers and one hidden layer, which can be constructed when the
network_type is cnn. The cnn_nips type is a simplified Q-network for Atari games,
which only contains two convolutional layers and one hidden layer with less filters and
hidden units. The mlp type is a feed-forward neural network with two hidden layers,
which is used for debugging. The vars variable is the list of all the trainable variables in the
Q-network.

Recall that the loss function is , which can be implemented as follows:

 def build_loss(self):
 indices = tf.transpose(tf.stack([tf.range(tf.shape(self.a)[0]),
 self.a], axis=0))
 value = tf.gather_nd(self.net['values'], indices)
 self.loss = 0.5 * tf.reduce_mean(tf.square((value - self.y)))
 self.gradient = tf.gradients(self.loss, self.vars)
 tf.summary.scalar("loss", self.loss, collections=['q_network'])
 self.summary_op = tf.summary.merge_all('q_network')

The tf.gather_nd function is used to get the action-value given a batch of
action,s ai. The variable loss represents the loss function, and gradient is the gradient of the
loss function with respect to the trainable variables. summary_op is for TensorBoard
visualization.

Playing Atari Games Chapter 7

[156]

The implementation of the replay memory doesn't involve TensorFlow:

class ReplayMemory:
 def __init__(self, history_len=4, capacity=1000000,
 batch_size=32, input_scale=255.0):
 self.capacity = capacity
 self.history_length = history_len
 self.batch_size = batch_size
 self.input_scale = input_scale
 self.frames = deque([])
 self.others = deque([])

The ReplayMemory class takes four input parameters, that is, history_len, capacity,
batch_size, and input_scale. history_len is the number of frames stacked together.
Typically, history_len is set to 4 for Atari games, forming an input image.
capacity is the capacity of the replay memory, namely, the maximum number of frames
that can be stored in it. batch_size is the size of one batch for training. input_scale is
the normalization factor for input images, for example, it is set to 255 for RGB images. The
variable frames record all the frame images and the variable others record the
corresponding actions, rewards, and termination signals.

ReplayMemory provides a function for adding a record (frame image, action, reward,
termination signal) into the memory:

 def add(self, frame, action, r, termination):
 if len(self.frames) == self.capacity:
 self.frames.popleft()
 self.others.popleft()
 self.frames.append(frame)
 self.others.append((action, r, termination))
 def add_nullops(self, init_frame):
 for _ in range(self.history_length):
 self.add(init_frame, 0, 0, 0)

It also provides a function for constructing an input image by concatenating the
last four frame images of a history:

 def phi(self, new_frame):
 assert len(self.frames) > self.history_length
 images = [new_frame] + [self.frames[-1-i] for i in
range(self.history_length-1)]
 return numpy.concatenate(images, axis=0)

Playing Atari Games Chapter 7

[157]

The following function randomly draws a transition (state, action, reward, next state,
termination signal) from the replay memory:

 def sample(self):
 while True:
 index = random.randint(a=self.history_length-1,
 b=len(self.frames)-2)
 infos = [self.others[index-i] for i in
range(self.history_length)]
 # Check if termination=1 before "index"
 flag = False
 for i in range(1, self.history_length):
 if infos[i][2] == 1:
 flag = True
 break
 if flag:
 continue
 state = self._phi(index)
 new_state = self._phi(index+1)
 action, r, termination = self.others[index]
 state = numpy.asarray(state / self.input_scale,
 dtype=numpy.float32)
 new_state = numpy.asarray(new_state / self.input_scale,
 dtype=numpy.float32)
 return (state, action, r, new_state, termination)

Note that only the termination signal corresponding to the last frame in a state is allowed to
be True. The _phi(index) function stacks the four frames together:

 def _phi(self, index):
 images = [self.frames[index-i] for i in range(self.history_length)]
 return numpy.concatenate(images, axis=0)

The Optimizer class is used for training the Q-network:

class Optimizer:
 def __init__(self, config, feedback_size,
 q_network, target_network, replay_memory):
 self.feedback_size = feedback_size
 self.q_network = q_network
 self.target_network = target_network
 self.replay_memory = replay_memory
 self.summary_writer = None
 self.gamma = config['gamma']
 self.num_frames = config['num_frames']
 optimizer = create_optimizer(config['optimizer'],
 config['learning_rate'],
 config['rho'],

Playing Atari Games Chapter 7

[158]

 config['rmsprop_epsilon'])
 self.train_op = optimizer.apply_gradients(
 zip(self.q_network.gradient,
 self.q_network.vars))

It takes the Q-network, the target network, the replay memory, and the size of input images
as the input arguments. In the constructor, it creates an optimizer (one of the popular
optimizers such as ADAM, RMSPROP, or MOMENTUM) and then builds an operator for
training.

To train the Q-network, it needs to construct a mini-batch of samples (states, actions,
targets) corresponding to , , and in the loss function :

 def sample_transitions(self, sess, batch_size):
 w, h = self.feedback_size
 states = numpy.zeros((batch_size, self.num_frames, w, h),
 dtype=numpy.float32)
 new_states = numpy.zeros((batch_size, self.num_frames, w, h),
 dtype=numpy.float32)
 targets = numpy.zeros(batch_size, dtype=numpy.float32)
 actions = numpy.zeros(batch_size, dtype=numpy.int32)
 terminations = numpy.zeros(batch_size, dtype=numpy.int32)
 for i in range(batch_size):
 state, action, r, new_state, t = self.replay_memory.sample()
 states[i] = state
 new_states[i] = new_state
 actions[i] = action
 targets[i] = r
 terminations[i] = t

 targets += self.gamma * (1 - terminations) *
self.target_network.get_q_value(sess, new_states)
 return states, actions, targets

Note that the targets are computed by the target network instead of the Q-network.
Given a mini-batch of states, actions, or targets, the Q-network can be easily trained by use
of the following:

 def train_one_step(self, sess, step, batch_size):
 states, actions, targets = self.sample_transitions(sess,
batch_size)
 feed_dict = self.q_network.get_feed_dict(states, actions, targets)
 if self.summary_writer and step % 1000 == 0:
 summary_str, _, = sess.run([self.q_network.summary_op,
 self.train_op],
 feed_dict=feed_dict)
 self.summary_writer.add_summary(summary_str, step)

Playing Atari Games Chapter 7

[159]

 self.summary_writer.flush()
 else:
 sess.run(self.train_op, feed_dict=feed_dict)

Besides the training procedure, for each 1000 steps, the summary is written to the log file.
This summary is for monitoring the training process, helping to tune the parameters, and
debugging.

Combining these modules together, we can implement the class DQN for the main deep Q-
learning algorithm:

class DQN:
 def __init__(self, config, game, directory,
 callback=None, summary_writer=None):
 self.game = game
 self.actions = game.get_available_actions()
 self.feedback_size = game.get_feedback_size()
 self.callback = callback
 self.summary_writer = summary_writer
 self.config = config
 self.batch_size = config['batch_size']
 self.n_episode = config['num_episode']
 self.capacity = config['capacity']
 self.epsilon_decay = config['epsilon_decay']
 self.epsilon_min = config['epsilon_min']
 self.num_frames = config['num_frames']
 self.num_nullops = config['num_nullops']
 self.time_between_two_copies = config['time_between_two_copies']
 self.input_scale = config['input_scale']
 self.update_interval = config['update_interval']
 self.directory = directory

 self._init_modules()

Here, config includes all the parameters of DQN, for example, batch size and learning rate
for training. game is an instance of the Atari environment. In the constructor, the replay
memory, Q-network, target network, and optimizer are initialized. To begin the training
process, the following function can be called:

 def train(self, sess, saver=None):
 num_of_trials = -1
 for episode in range(self.n_episode):
 self.game.reset()
 frame = self.game.get_current_feedback()
 for _ in range(self.num_nullops):
 r, new_frame, termination = self.play(action=0)
 self.replay_memory.add(frame, 0, r, termination)

Playing Atari Games Chapter 7

[160]

 frame = new_frame
 for _ in range(self.config['T']):
 num_of_trials += 1
 epsilon_greedy = self.epsilon_min + \
 max(self.epsilon_decay - num_of_trials, 0) / \
 self.epsilon_decay * (1 - self.epsilon_min)

 if num_of_trials % self.update_interval == 0:
 self.optimizer.train_one_step(sess,
 num_of_trials,
 self.batch_size)
 state = self.replay_memory.phi(frame)
 action = self.choose_action(sess, state, epsilon_greedy)
 r, new_frame, termination = self.play(action)
 self.replay_memory.add(frame, action, r, termination)
 frame = new_frame
 if num_of_trials % self.time_between_two_copies == 0:
 self.update_target_network(sess)
 self.save(sess, saver)
 if self.callback:
 self.callback()
 if termination:
 score = self.game.get_total_reward()
 summary_str = sess.run(self.summary_op,
 feed_dict={self.t_score: score})
 self.summary_writer.add_summary(summary_str,
 num_of_trials)
 self.summary_writer.flush()
 break

This function is easy to understand. In each episode, it calls replay_memory.phi to get the
current state and calls the choose_action function to select an action via the greedy
policy. This action is submitted into the Atari emulator by calling the play function, which
returns the corresponding reward, next frame image, and termination signal. Then, the
transition (current frame image, action, reward, termination) is stored in the replay
memory. For every update_interval step (update_interval = 1 by default), the Q-
network is trained with a batch of transitions randomly sampled from the replay memory.
For every time_between_two_copies step, the target network copies the Q-network, and
the weights of the Q-network are saved to the hard disk.

After the training step, the following function can be called for evaluating the AI player's
performance:

 def evaluate(self, sess):
 for episode in range(self.n_episode):
 self.game.reset()

Playing Atari Games Chapter 7

[161]

 frame = self.game.get_current_feedback()
 for _ in range(self.num_nullops):
 r, new_frame, termination = self.play(action=0)
 self.replay_memory.add(frame, 0, r, termination)
 frame = new_frame
 for _ in range(self.config['T']):
 state = self.replay_memory.phi(frame)
 action = self.choose_action(sess, state, self.epsilon_min)
 r, new_frame, termination = self.play(action)
 self.replay_memory.add(frame, action, r, termination)
 frame = new_frame

 if self.callback:
 self.callback()
 if termination:
 break

Now, we are ready to train our first AI player for Atari games. The implementation is not
hard if you understand the intuition behind the algorithm, is it? Now is the time to run the
program and witness the magic!

Experiments
The full implementation of the deep Q-learning algorithm can be downloaded from GitHub
(link xxx). To train our AI player for Breakout, run the following command under the src
folder:

python train.py -g Breakout -d gpu

There are two arguments in train.py. One is -g or --game, indicating the name of the
game one wants to test. The other one is -d or --device, which specifies the device (CPU
or GPU) one wants to use to train the Q-network.

For Atari games, even with a high-end GPU, it will take 4-7 days to make our AI player
achieve human-level performance. In order to test the algorithm quickly, a special game
called demo is implemented as a lightweight benchmark. Run the demo via the following:

python train.py -g demo -d cpu

Playing Atari Games Chapter 7

[162]

The demo game is based on the GridWorld game on the website at https://cs.stanford.
edu/people/karpathy/convnetjs/demo/rldemo.html:

In this game, a robot in a 2D grid world has nine eyes pointing in different angles, and each
eye senses three values along its direction: distance to a wall, distance to a green bean, or
distance to a red bean. It navigates by using one of five actions that turn it different angles.
It gets a positive reward (+1) for eating green beans while a negative reward (-1) for eating
red beans. The goal is to eat green beans as much as possible in one episode.

The training will take several minutes. During the training, you can open a new terminal
and type the following command to visualize the architecture of the Q-network and the
training procedure:

tensorboard --logdir=log/demo/train

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

Playing Atari Games Chapter 7

[163]

Here, logdir points to the folder where the log file of demo is stored. Once TensorBoard is
running, navigate your web browser to localhost:6006 to view the TensorBoard:

The two graphs plot the loss and the score against the training step, respectively. Clearly,
after 100k training steps, the performance of the robot becomes stable, for example, the
score is around 40.

You can also visualize the weights of the Q-network through TensorBoard. For more
details, visit the TensorBoard guide at https://www.tensorflow.org/programmers_guide/
summaries_and_tensorboard. This tool is quite useful for debugging and optimizing the
code, especially for complicated algorithms such as DQN.

Summary
Congratulations! You just learned four important things. The first one is how to implement
an Atari game emulator using gym, and how to play Atari games for relaxation and having
fun. The second one is that you learned how to preprocess data in reinforcement learning
tasks such as Atari games. For practical machine learning applications, you will spend a
great deal of time on understanding and refining data, which affects the performance of an
AI system a lot. The third one is the deep Q-learning algorithm. You learned the intuition
behind it, for example, why the replay memory is necessary, why the target network is
needed, where the update rule comes from, and so on. The final one is that you learned
how to implement DQN using TensorFlow, and how to visualize the training process.
Now, you are ready for the more advanced topics that we will discuss in the following
chapters.

In the next chapter, you will learn how to simulate classic control tasks, and how to
implement the state-of-the-art actor-critic algorithms for control.

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

8
Atari Games with Deep Q

Network
Deep Q Network (DQN) is one of the very popular and widely used deep reinforcement
learning (DRL) algorithms. In fact, it created a lot of buzz around the reinforcement
learning (RL) community after its release. The algorithm was proposed by researchers at
Google's DeepMind and achieved human-level results when playing any Atari game by
just taking the game screen as input.

In this chapter, we will explore how DQN works and also learn how to build a DQN that
plays any Atari game by taking only the game screen as input. We will look at some of the
improvements made to DQN architecture, such as double DQN and dueling network
architecture.

In this chapter, you will learn about:

Deep Q Networks (DQNs)
Architecture of DQN
Building an agent to play Atari games
Double DQN
Prioritized experience replay

Atari Games with Deep Q Network Chapter 8

[165]

What is a Deep Q Network?
Before going ahead, first, let us just recap the Q function. What is a Q function? A Q
function, also called a state-action value function, specifies how good an action a is in the
state s. So, we store the value of all possible actions in each state in a table called a Q table
and we pick the action that has the maximum value in a state as the optimal action.
Remember how we learned this Q function? We used Q learning, which is an off-policy
temporal difference learning algorithm for estimating the Q function. We looked at this in
Chapter 5, Temporal Difference Learning.

So far, we have seen environments with a finite number of states with limited actions, and
we did an exhaustive search through all possible state-action pairs for finding the optimal
Q value. Think of an environment where we have a very large number of states and, in each
state, we have a lot of actions to try. It would be time-consuming to go through all the
actions in each state. A better approach would be to approximate the Q function with some
parameter as . We can use a neural network with weights to
approximate the Q value for all possible actions in each state. As we are using neural
networks to approximate the Q function, we can call it a Q network. Okay, but how do we
train the network and what will be our objective function? Recall our Q learning update
rule:

.

 is the target value and is the predicted value; we tried to minimize
this value by learning a right policy.

Similarly, in DQN, we can define the loss function as the squared difference between the
target and predicted value, and we will also try to minimize the loss by updating the
weights :

Where .

We update the weights and minimize the loss through gradient descent. In a nutshell, in
DQN, we use neural networks as function approximators for approximating a Q function,
and we minimize errors through gradient descent.

Atari Games with Deep Q Network Chapter 8

[166]

Architecture of DQN
Now that we have a basic understanding of DQN, we will go into detail about how DQN
works and the architecture of DQN for playing Atari games. We will look at each
component and then we will view the algorithm as a whole.

Convolutional network
The first layer of DQN is the convolutional network, and the input to the network will be a
raw frame of the game screen. So, we take a raw frame and pass that to the convolutional
layers to understand the game state. But the raw frames will have 210 x 160 pixels with a
128 color palette and it will clearly take a lot of computation and memory if we feed the
raw pixels directly. So, we downsample the pixel to 84 x 84 and convert the RGB values to
grayscale values and we feed this pre-processed game screen as the input to the
convolutional layers. The convolutional layer understands the game screen by identifying
the spatial relationship between different objects in the image. We use two convolutional
layers followed by a fully connected layer with ReLU as the activation function. Here, we
don't use a pooling layer.

A pooling layer is useful when we perform tasks such as object detection or classification,
where we don't consider the position of the object in the image and we just want to know
whether the desired object is in the image. For example, if we want to classify whether there
is a dog in an image, we only look at whether a dog is there in an image and we don't check
where the dog is. In that case, a pooling layer is used to classify the image irrespective of
the position of the dog. But for us to understand the game screen, the position is important
as it depicts the game status. For example, in a Pong game, we don't just want to classify if
there is a ball on the game screen. We want to know the position of the ball so that we can
make our next move. That's why we don't use a pooling layer in our architecture.

Okay, how can we compute the Q value? If we pass one game screen and one action as an
input to the DQN, it will give us the Q value. But it will require one complete forward pass,
as there will be many actions in a state. Also, there will be many states in a game with one
forward pass for each action, which will be computationally expensive. So, we simply pass
the game screen alone as an input and get the Q values for all possible actions in the state
by setting the number of units in the output layer to the number of actions in the game
state.

Atari Games with Deep Q Network Chapter 8

[167]

The architecture of DQN is shown in the following diagram, where we feed a game screen
and it provides the Q value for all actions in that game state:

To predict the Q values of the game state, we don't use only the current game screen; we
also consider the past four game screens. Why is that? Consider the Pac-Man game where
the goal of the Pac-Man is to move and eat all the dots. By just looking at the current game
screen, we cannot know in which direction Pac-Man is moving. But if we have past game
screens, we can understand in which direction Pac-Man is moving. We use the past four
game screens along with the current game screen as input.

Experience replay
We know that in RL environments, we make a transition from one state s to the next state s'
by performing some action a and receive a reward r. We save this transition information as

 in a buffer called a replay buffer or experience replay. These transitions are
called the agent's experience.

The key idea of experience replay is that we train our deep Q network with transitions
sampled from the replay buffer instead of training with the last transitions. Agent's
experiences are correlated one at a time, so selecting a random batch of training samples
from the replay buffer will reduce the correlation between the agent's experience and helps
the agent to learn better from a wide range of experiences.

Atari Games with Deep Q Network Chapter 8

[168]

Also, neural networks will overfit with correlated experience, so by selecting a random
batch of experiences from reply buffer we will reduce the overfitting. We can use uniform
sampling for sampling the experience. We can think of experience replay as a queue rather
than a list. A replay buffer will store only a fixed number of recent experiences, so when the
new information comes in, we delete the old:

Target network
In our loss function, we calculate the squared difference between a target and predicted
value:

We are using the same Q function for calculating the target value and the predicted value.
In the preceding equation, you can see the same weights are used for both target Q and
predicted Q. Since the same network is calculating the predicted value and target value,
there could be a lot of divergence between these two.

To avoid this problem, we use a separate network called a target network for calculating
the target value. So, our loss function becomes:

You may notice that the parameter of target Q is instead of . Our actual Q network,
which is used for predicting Q values, learns the correct weights of by using gradient
descent. The target network is frozen for several time steps and then the target network
weights are updated by copying the weights from the actual Q network. Freezing the target
network for a while and then updating its weights with the actual Q network weights
stabilizes the training.

Atari Games with Deep Q Network Chapter 8

[169]

Clipping rewards
How do we assign rewards? Reward assignment varies for each game. In some games, we
can assign rewards such as +1 for winning, -1 for loss, and 0 for nothing, but in some other
games, we have to assign rewards such as + 100 for doing an action and +50 for doing
another action. To avoid this problem, we clip all the rewards to -1 and +1.

Understanding the algorithm
Now, we will see how DQN works overall. The steps involved in DQN are as follows:

First, we preprocess and feed the game screen (state s) to our DQN, which will1.
return the Q values of all possible actions in the state.
Now we select an action using the epsilon-greedy policy: with the probability2.
epsilon, we select a random action a and with probability 1-epsilon, we select an
action that has a maximum Q value, such as .
After selecting the action a, we perform this action in a state s and move to a new3.
state s' and receive a reward. The next state, s', is the preprocessed image of the
next game screen.
We store this transition in our replay buffer as <s,a,r,s'>.4.
Next, we sample some random batches of transitions from the replay buffer and5.
calculate the loss.

We know that , as in the squared6.
difference between target Q and predicted Q.
We perform gradient descent with respect to our actual network parameters in7.
order to minimize this loss.
After every k steps, we copy our actual network weights to the target network8.
weights .
We repeat these steps for M number of episodes. 9.

Atari Games with Deep Q Network Chapter 8

[170]

Building an agent to play Atari games
Now we will see how to build an agent to play any Atari game. You can get the complete
code as a Jupyter notebook with the explanation here (https://github.com/
sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.
%20Atari%20Games%20with%20DQN/8.
8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb).

First, we import all the necessary libraries:

import numpy as np
import gym
import tensorflow as tf
from tensorflow.contrib.layers import flatten, conv2d, fully_connected
from collections import deque, Counter
import random
from datetime import datetime

We can use any of the Atari gaming environments given here: http://gym.openai.com/
envs/#atari.

In this example, we use the Pac-Man game environment:

env = gym.make("MsPacman-v0")
n_outputs = env.action_space.n

The Pac-Man environment is shown here:

https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari

Atari Games with Deep Q Network Chapter 8

[171]

Now we define a preprocess_observation function for preprocessing our input game
screen. We reduce the image size and convert the image to grayscale:

color = np.array([210, 164, 74]).mean()

def preprocess_observation(obs):

 # Crop and resize the image
 img = obs[1:176:2, ::2]

 # Convert the image to greyscale
 img = img.mean(axis=2)

 # Improve image contrast
 img[img==color] = 0

 # Next we normalize the image from -1 to +1
 img = (img - 128) / 128 - 1

 return img.reshape(88,80,1)

Okay, now we define a q_network function for building our Q network. The input to our
Q network will be the game state X.

We build a Q network with three convolutional layers with the same padding, followed by
a fully connected layer:

tf.reset_default_graph()

def q_network(X, name_scope):
 # Initialize layers
 initializer = tf.contrib.layers.variance_scaling_initializer()

 with tf.variable_scope(name_scope) as scope:

 # initialize the convolutional layers
 layer_1 = conv2d(X, num_outputs=32, kernel_size=(8,8), stride=4,
padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_1',layer_1)
 layer_2 = conv2d(layer_1, num_outputs=64, kernel_size=(4,4),
stride=2, padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_2',layer_2)
 layer_3 = conv2d(layer_2, num_outputs=64, kernel_size=(3,3),
stride=1, padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_3',layer_3)
 # Flatten the result of layer_3 before feeding to the
 # fully connected layer
 flat = flatten(layer_3)

Atari Games with Deep Q Network Chapter 8

[172]

 fc = fully_connected(flat, num_outputs=128,
weights_initializer=initializer)
 tf.summary.histogram('fc',fc)
 output = fully_connected(fc, num_outputs=n_outputs,
activation_fn=None, weights_initializer=initializer)
 tf.summary.histogram('output',output)

 # Vars will store the parameters of the network such as weights
 vars = {v.name[len(scope.name):]: v for v in
tf.get_collection(key=tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name)}
 return vars, output

Next, we define an epsilon_greedy function for performing the epsilon-greedy policy. In
the epsilon-greedy policy, we either select the best action with the probability 1-epsilon or a
random action with the probability epsilon.

We use a decaying epsilon-greedy policy where the value of epsilon will be decaying over
time as we don't want to explore forever. So, over time, our policy will be exploiting only
good actions:

epsilon = 0.5
eps_min = 0.05
eps_max = 1.0
eps_decay_steps = 500000
def epsilon_greedy(action, step):
 p = np.random.random(1).squeeze()
 epsilon = max(eps_min, eps_max - (eps_max-eps_min) *
step/eps_decay_steps)
 if np.random.rand() < epsilon:
 return np.random.randint(n_outputs)
 else:
 return action

Now, we initialize our experience replay buffer of length 20000, which holds the
experience.

Atari Games with Deep Q Network Chapter 8

[173]

We store all the agent's experiences (state, action, rewards) in the experience replay buffer
and we sample this mini batch of experiences for training the network:

def sample_memories(batch_size):
 perm_batch = np.random.permutation(len(exp_buffer))[:batch_size]
 mem = np.array(exp_buffer)[perm_batch]
 return mem[:,0], mem[:,1], mem[:,2], mem[:,3], mem[:,4]

Next, we define all our hyperparameters:

num_episodes = 800
batch_size = 48
input_shape = (None, 88, 80, 1)
learning_rate = 0.001
X_shape = (None, 88, 80, 1)
discount_factor = 0.97

global_step = 0
copy_steps = 100
steps_train = 4
start_steps = 2000
logdir = 'logs'

Now we define the placeholder for our input, such as the game state:

X = tf.placeholder(tf.float32, shape=X_shape)

We define a boolean called in_training_mode to toggle the training:

in_training_mode = tf.placeholder(tf.bool)

We build our Q network, which takes the input X and generates Q values for all the actions
in the state:

mainQ, mainQ_outputs = q_network(X, 'mainQ')

Similarly, we build our target Q network:

targetQ, targetQ_outputs = q_network(X, 'targetQ')

Define the placeholder for our action values:

X_action = tf.placeholder(tf.int32, shape=(None,))
Q_action = tf.reduce_sum(targetQ_outputs * tf.one_hot(X_action, n_outputs),
axis=-1, keep_dims=True)

Atari Games with Deep Q Network Chapter 8

[174]

Copy the main Q network parameters to the target Q network:

copy_op = [tf.assign(main_name, targetQ[var_name]) for var_name, main_name
in mainQ.items()]
copy_target_to_main = tf.group(*copy_op)

Define a placeholder for our output, such as action:

y = tf.placeholder(tf.float32, shape=(None,1))

Now we calculate the loss, which is the difference between the actual value and predicted
value:

loss = tf.reduce_mean(tf.square(y - Q_action))

We use AdamOptimizer for minimizing the loss:

optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

Set up the log files for visualization in TensorBoard:

loss_summary = tf.summary.scalar('LOSS', loss)
merge_summary = tf.summary.merge_all()
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

Next, we start the TensorFlow session and run the model:

init = tf.global_variables_initializer()
with tf.Session() as sess:
 init.run()
 # for each episode
 for i in range(num_episodes):
 done = False
 obs = env.reset()
 epoch = 0
 episodic_reward = 0
 actions_counter = Counter()
 episodic_loss = []

 # while the state is not the terminal state
 while not done:

 #env.render()
 # get the preprocessed game screen
 obs = preprocess_observation(obs)

 # feed the game screen and get the Q values for each action
 actions = mainQ_outputs.eval(feed_dict={X:[obs],

Atari Games with Deep Q Network Chapter 8

[175]

in_training_mode:False})

 # get the action
 action = np.argmax(actions, axis=-1)
 actions_counter[str(action)] += 1

 # select the action using epsilon greedy policy
 action = epsilon_greedy(action, global_step)
 # now perform the action and move to the next state,
 # next_obs, receive reward
 next_obs, reward, done, _ = env.step(action)

 # Store this transition as an experience in the replay buffer
 exp_buffer.append([obs, action,
preprocess_observation(next_obs), reward, done])
 # After certain steps, we train our Q network with samples from
the experience replay buffer
 if global_step % steps_train == 0 and global_step >
start_steps:
 # sample experience
 o_obs, o_act, o_next_obs, o_rew, o_done =
sample_memories(batch_size)

 # states
 o_obs = [x for x in o_obs]

 # next states
 o_next_obs = [x for x in o_next_obs]

 # next actions
 next_act = mainQ_outputs.eval(feed_dict={X:o_next_obs,
in_training_mode:False})

 # reward
 y_batch = o_rew + discount_factor * np.max(next_act,
axis=-1) * (1-o_done)

 # merge all summaries and write to the file
 mrg_summary = merge_summary.eval(feed_dict={X:o_obs,
y:np.expand_dims(y_batch, axis=-1), X_action:o_act,
in_training_mode:False})
 file_writer.add_summary(mrg_summary, global_step)

Atari Games with Deep Q Network Chapter 8

[176]

 # now we train the network and calculate loss
 train_loss, _ = sess.run([loss, training_op],
feed_dict={X:o_obs, y:np.expand_dims(y_batch, axis=-1), X_action:o_act,
in_training_mode:True})
 episodic_loss.append(train_loss)
 # after some interval we copy our main Q network weights to
target Q network
 if (global_step+1) % copy_steps == 0 and global_step >
start_steps:
 copy_target_to_main.run()
 obs = next_obs
 epoch += 1
 global_step += 1
 episodic_reward += reward
 print('Epoch', epoch, 'Reward', episodic_reward,)

You can see the output as follows:

Atari Games with Deep Q Network Chapter 8

[177]

We can see the computation graph of the DQN in TensorBoard as follows:

Atari Games with Deep Q Network Chapter 8

[178]

We can visualize the distribution of weights in both our main and target networks:

Atari Games with Deep Q Network Chapter 8

[179]

We can also see the loss:

Double DQN
Deep Q learning is pretty cool, right? It has generalized its learning to play any Atari game.
But the problem with DQN is that it tends to overestimate Q values. This is because of the
max operator in the Q learning equation. The max operator uses the same value for both
selecting and evaluating an action. What do I mean by that? Let's suppose we are in a state
s and we have five actions a1 to a5. Let's say a3 is the best action. When we estimate Q values
for all these actions in the state s, the estimated Q values will have some noise and differ
from the actual value. Due to this noise, action a2 will get a higher value than the optimal
action a3. Now, if we select the best action as the one that has maximum value, we will end
up selecting a suboptimal action a2 instead of optimal action a3.

Atari Games with Deep Q Network Chapter 8

[180]

We can solve this problem by having two separate Q functions, each learning
independently. One Q function is used to select an action and the other Q function is used
to evaluate an action. We can implement this by just tweaking the target function of DQN.
Recall the target function of DQN:

We can modify our target function as follows:

In the preceding equation, we have two Q functions each with different weights. So a Q
function with weights is used to select the action and the other Q function with weights

 is used to evaluate the action. We can also switch the roles of these two Q functions.

Prioritized experience replay
In DQN architecture, we use experience replay to remove correlations between the training
samples. However, uniformly sampling transitions from the replay memory is not an
optimal method. Instead, we can prioritize transitions and sample according to priority.
Prioritizing transitions helps the network to learn swiftly and effectively. How do we
prioritize the transitions? We prioritize the transitions that have a high TD error. We know
that a TD error specifies the difference between the estimated Q value and the actual Q
value. So, transitions with a high TD error are the transition we have to focus on and learn
from because those are the transitions that deviate from our estimation. Intuitively, let us
say you try to solve a set of problems, but you fail in solving two of these problems. You
then give priority to those two problems alone to focus on what went wrong and try to fix
that:

Atari Games with Deep Q Network Chapter 8

[181]

We use two types of prioritization—proportional prioritization and rank-based
prioritization.

In proportional prioritization, we define the priority as:

 is the priority of the transition i, is the TD error of transition i, and is simply some
positive constant value that makes sure that every transition has non-zero priority. When
is zero, adding makes the transition have a priority instead of zero priority. However, the
transition will have lower priority than the transitions whose is not zero. The
exponent denotes the amount of prioritization being used. When is zero, then it is simply
the uniform case.

Now, we can translate this priority into a probability using the following formula:

In rank-based prioritization, we define the priority as:

rank(i) specifies the location of the transition i in the replay buffer where the transitions are
sorted from high TD error to low TD error. After calculating the priority, we can convert

the priority into a probability using the same formula, .

Dueling network architecture
We know that the Q function specifies how good it is for an agent to perform an action a in
the state s and the value function specifies how good it is for an agent to be in a state s. Now
we introduce a new function called an advantage function which can be defined as the
difference between the value function and the advantage function. The advantage function
specifies how good it is for an agent to perform an action a compared to other actions.

Atari Games with Deep Q Network Chapter 8

[182]

Thus, the value function specifies the goodness of a state and the advantage function
specifies the goodness of an action. What would happen if we were to combine the value
function and advantage function? It would tell us how good it is for an agent to perform an
action a in a state s that is actually our Q function. So we can define our Q function as a sum
of a value function and an advantage function, as in .

Now we will see how the dueling network architecture works. The following diagram
shows the architecture of dueling DQN:

The architecture of dueling DQN is essentially the same as DQN, except that the fully
connected layer at the end is divided into two streams. One stream computes the value
function, and the other stream computes the advantage function. Finally, we combine these
two streams using the aggregate layer and get the Q function.

Why do we have to break our Q function computation into two streams? In many states, it
is not important to compute value estimates of all the actions, especially when we have a
large action space in a state; then most of the actions will not have any effect on the state.
Also, there could be many actions with redundant effects. In these cases, dueling DQN
estimates the Q values more precisely than the existing DQN architecture:

The first stream, as in value function stream, is useful when we have a large
number of actions in the state and when estimating a value of each action is not
really important
The second stream, as in advantage function stream, is useful when the network
has to decide which action is preferred over the other

The aggregator layer combines the value of these two streams and produces the Q function.
Thus, a dueling network is more effective and robust than the standard DQN architecture.

Atari Games with Deep Q Network Chapter 8

[183]

Summary
In this chapter, we have learned about one of the very popular deep reinforcement learning
algorithms called DQN. We saw how deep neural networks are used to approximate the Q
function. We also learned how to build an agent to play Atari games. Later, we looked at
several advancements to the DQN, such as double DQN, which is used to avoid
overestimating Q values. We then looked at prioritized experience replay, for prioritizing
the experience, and dueling network architecture, which breaks down the Q function
computation into two streams, called value stream and advantage stream.

In the next chapter, Chapter 9, Playing Doom with Deep Recurrent Q Network, we will look at
a really cool variant of DQNs called DRQN, which makes use of an RNN for approximating
a Q function.

Questions
The question list is as follows:

What is DQN?1.
What is the need for experience replay?2.
Why do we keep a separate target network?3.
Why is DQN overestimating?4.
How does double DQN avoid overestimating the Q value?5.
How are experiences prioritized in prioritized experience replay? 6.
What is the need for duel architecture?7.

Further reading
DQN paper: https://storage.googleapis.com/deepmind-media/dqn/
DQNNaturePaper.pdf

Double DQN paper: https://arxiv.org/pdf/1509.06461.pdf

Dueling network architecture: https://arxiv.org/pdf/1511.06581.pdf

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1511.06581.pdf

9
Playing Doom with a Deep

Recurrent Q Network
In the last chapter, we saw how to build an agent using a Deep Q Network (DQN) in order
to play Atari games. We have taken advantage of neural networks for approximating the Q
function, used the convolutional neural network (CNN) to understand the input game
screen, and taken the past four game screens to better understand the current game state. In
this chapter, we will learn how to improve the performance of our DQN by taking
advantage of the recurrent neural network (RNN). We will also look at what is partially
observable with the Markov Decision Process (MDP) and how we can solve that using
a Deep Recurrent Q Network (DRQN). Following this, we will learn how to build an agent
to play the game Doom using a DRQN. Finally, we will see a variant of DRQN called Deep
Attention Recurrent Q Network (DARQN), which augments the attention mechanism to
the DRQN architecture.

In this chapter, you will learn the following topics:

DRQN
Partially observable MDP
The architecture of DRQN
How to build an agent to play the game Doom using a DRQN
DARQN

Playing Doom with a Deep Recurrent Q Network Chapter 9

[185]

DRQN
So, why do we need DRQN when our DQN performed at a human level at Atari games? To
answer this question, let us understand the problem of the partially observable Markov
Decision Process (POMDP). An environment is called a partially observable MDP when
we have a limited set of information available about the environment. So far, in the
previous chapters, we have seen a fully observable MDP where we know all possible
actions and states—although the agent might be unaware of transition and reward
probabilities, it had complete knowledge of the environment, for example, a frozen lake
environment, where we clearly know about all the states and actions of the environment;
we easily modeled that environment as a fully observable MDP. But most of the real-world
environments are only partially observable; we cannot see all the states. Consider the agent
learning to walk in the real-world environment; obviously, the agent will not have
complete knowledge of the environment, it will have no information outside its view. In
POMDP, states provide only partial information, but keeping the information about past
states in the memory might help the agent better understand the nature of the environment
and improve the policy. Thus, in POMDP, we need to retain the information about
previous states in order to take the optimal action.

To recollect what we learned in previous chapters, consider the game Pong, shown in the
following. By just looking at the current game screen, we can tell the position of the ball,
but we also need to know the direction in which the ball is moving and the velocity of the
ball, so that we can take the optimal action. Just looking at the current game screen,
however, does not give us the direction and velocity of the ball:

Playing Doom with a Deep Recurrent Q Network Chapter 9

[186]

To overcome this, instead of considering only the current game screen, we will take the
past four game screens to understand the direction and velocity of the ball. This is what we
have seen in DQN. We feed the past four game screens as the input to the convolutional
layer, along with the current game screen, and received the Q values for all possible actions
in the state. But, do you think using only the past four screens will help us in
understanding different environments? There will be some environments where we might
even require the past 100 game screens to better understand the current game state. But,
stacking the past n game screens will slow down our training process, and it will also
increase the size of our experience replay buffer.

So, we can take the advantage of the RNN here to understand and retain information about
the previous states as long as it is required. We will modify the DQN architecture by
augmenting with the LSTM layer to understand the previous information. In DQN
architecture, we replace the first post convolutional fully connected layer with the LSTM
RNN. In this way, we can also solve the problem of partial observability, as now our agent
has the ability to remember the past states and can improve the policy.

Architecture of DRQN
The architecture of DRQN is shown next. It is similar to DQN, but we replace the first post
convolutional fully connected layer with the LSTM RNN, shown as follows:

Playing Doom with a Deep Recurrent Q Network Chapter 9

[187]

Thus, we pass the game screen as an input to the convolutional layer. The convolutional
layer convolves the image and produces feature maps. The resulting feature map is then
passed to the LSTM layer. The LSTM layer has the memory for holding information. The
LSTM layer retains the information about important previous game states and updates its
memory over time steps as required. It outputs Q values after passing through a fully
connected layer. Therefore, unlike DQN, we don't estimate Q(st, at) directly. Instead, we
estimate Q(ht, at) where ht is the input returned by the network at the previous time step.
That is, ht = LSTM(ht-1, ot). As we are using RNN, we train our network by backpropagation
through time.

Wait. What about the experience replay buffer? In DQN, to avoid correlated experience, we
used an experience replay, which stores the game transition, and we used a random batch
of experience to train the network. In the case of DRQN, we store an entire episode in an
experience buffer and we randomly sample n steps from a random batch of episodes. So, in
this way, we can accommodate both randomization and also an experience that actually
follows another.

Training an agent to play Doom
Doom is a very popular first-person shooter game. The goal of the game is to kill monsters.
Doom is another example of a partially observable MDP as the agent's (player) view is
limited to 90 degrees. The agent has no idea about the rest of the environment. Now, we
will see how can we use DRQN to train our agent to play Doom.

Instead of OpenAI Gym, we will use the ViZDoom package to simulate the Doom
environment to train our agent. To learn more about the ViZDoom package, check out its
official website at http://vizdoom.cs.put.edu.pl/. We can install ViZDoom simply by
using the following command:

pip install vizdoom

ViZDoom provides a lot of Doom scenarios and those scenarios can be found in the
package folder vizdoom/scenarios.

http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/

Playing Doom with a Deep Recurrent Q Network Chapter 9

[188]

Basic Doom game
Before diving in, let us familiarize ourselves with a vizdoom environment by seeing a basic
example:

Let's load the necessary libraries:1.

from vizdoom import *
import random
import time

 Create an instance to the DoomGame:2.

game = DoomGame()

As we know ViZDoom provides a lot of Doom scenarios, let us load the basic3.
scenario:

game.load_config("basic.cfg")

The init() method initializes the game with the scenario:4.

game.init()

Now, let's define the one with hot encoded actions:5.

shoot = [0, 0, 1]
left = [1, 0, 0]
right = [0, 1, 0]
actions = [shoot, left, right]

Now, let us start playing the game:6.

no_of_episodes = 10

for i in range(no_of_episodes):
 # for each episode start the game
 game.new_episode()
 # loop until the episode is over
 while not game.is_episode_finished():
 # get the game state
 state = game.get_state()
 img = state.screen_buffer
 # get the game variables
 misc = state.game_variables

Playing Doom with a Deep Recurrent Q Network Chapter 9

[189]

 # perform some action randomly and receive reward
 reward = game.make_action(random.choice(actions))
 print(reward)
 # we will set some time before starting the next episode
 time.sleep(2)

Once you run the program, you can see the output as follows:

Doom with DRQN
Now, let us see how to make use of the DRQN algorithm to train our agent to play Doom.
We assign positive rewards for successfully killing the monsters and negative rewards for
losing life, suicide, and losing ammo (bullets). You can get the complete code as a Jupyter
notebook with the explanation at https://github.com/sudharsan13296/Hands-On-
Reinforcement-Learning-With-Python/blob/master/09.
%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb.
The credits for the code used in this section go to Luthanicus (https://github.com/
Luthanicus/losaltoshackathon-drqn).

https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn

Playing Doom with a Deep Recurrent Q Network Chapter 9

[190]

First, let us import all the necessary libraries:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from vizdoom import *
import timeit
import math
import os
import sys

Now, let us define the get_input_shape function to compute the final shape of the input
image after it gets convolved after the convolutional layer:

def get_input_shape(Image,Filter,Stride):
 layer1 = math.ceil(((Image - Filter + 1) / Stride))
 o1 = math.ceil((layer1 / Stride))
 layer2 = math.ceil(((o1 - Filter + 1) / Stride))
 o2 = math.ceil((layer2 / Stride))
 layer3 = math.ceil(((o2 - Filter + 1) / Stride))
 o3 = math.ceil((layer3 / Stride))
 return int(o3)

We will now define the DRQN class, which implements the DRQN algorithm. Check the
comments that precede each line of code to understand it:

class DRQN():
 def __init__(self, input_shape, num_actions, initial_learning_rate):
 # first, we initialize all the hyperparameters

 self.tfcast_type = tf.float32
 # shape of our input, which would be (length, width, channels)
 self.input_shape = input_shape
 # number of actions in the environment
 self.num_actions = num_actions
 # learning rate for the neural network
 self.learning_rate = initial_learning_rate
 # now we will define the hyperparameters of the convolutional
neural network

 # filter size
 self.filter_size = 5
 # number of filters
 self.num_filters = [16, 32, 64]
 # stride size
 self.stride = 2
 # pool size
 self.poolsize = 2

Playing Doom with a Deep Recurrent Q Network Chapter 9

[191]

 # shape of our convolutional layer
 self.convolution_shape = get_input_shape(input_shape[0],
self.filter_size, self.stride) * get_input_shape(input_shape[1],
self.filter_size, self.stride) * self.num_filters[2]
 # now, we define the hyperparameters of our recurrent neural
network and the final feed forward layer
 # number of neurons
 self.cell_size = 100
 # number of hidden layers
 self.hidden_layer = 50
 # drop out probability
 self.dropout_probability = [0.3, 0.2]

 # hyperparameters for optimization
 self.loss_decay_rate = 0.96
 self.loss_decay_steps = 180

 # initialize all the variables for the CNN

 # we initialize the placeholder for input whose shape would be
(length, width, channel)
 self.input = tf.placeholder(shape = (self.input_shape[0],
self.input_shape[1], self.input_shape[2]), dtype = self.tfcast_type)
 # we will also initialize the shape of the target vector whose
shape is equal to the number of actions
 self.target_vector = tf.placeholder(shape = (self.num_actions, 1),
dtype = self.tfcast_type)

 # initialize feature maps for our corresponding 3 filters
 self.features1 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, input_shape[2],
self.num_filters[0]),
 dtype = self.tfcast_type)
 self.features2 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, self.num_filters[0],
self.num_filters[1]),
 dtype = self.tfcast_type)
 self.features3 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, self.num_filters[1],
self.num_filters[2]),
 dtype = self.tfcast_type)

 # initialize variables for RNN
 self.h = tf.Variable(initial_value = np.zeros((1, self.cell_size)),
dtype = self.tfcast_type)
 # hidden to hidden weight matrix
 self.rW = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. /

Playing Doom with a Deep Recurrent Q Network Chapter 9

[192]

(self.convolution_shape + self.cell_size)),
 high = np.sqrt(6. /
(self.convolution_shape + self.cell_size)),
 size = (self.convolution_shape,
self.cell_size)),
 dtype = self.tfcast_type)
 # input to hidden weight matrix
 self.rU = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. / (2 *
self.cell_size)),
 high = np.sqrt(6. / (2 *
self.cell_size)),
 size = (self.cell_size,
self.cell_size)),
 dtype = self.tfcast_type)
 # hidden to output weight matrix
 self.rV = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. / (2 *
self.cell_size)),
 high = np.sqrt(6. / (2 *
self.cell_size)),
 size = (self.cell_size,
self.cell_size)),
 dtype = self.tfcast_type)
 # bias
 self.rb = tf.Variable(initial_value = np.zeros(self.cell_size),
dtype = self.tfcast_type)
 self.rc = tf.Variable(initial_value = np.zeros(self.cell_size),
dtype = self.tfcast_type)

 # initialize weights and bias of feed forward network
 # weights
 self.fW = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. /
(self.cell_size + self.num_actions)),
 high = np.sqrt(6. /
(self.cell_size + self.num_actions)),
 size = (self.cell_size,
self.num_actions)),
 dtype = self.tfcast_type)
 # bias
 self.fb = tf.Variable(initial_value = np.zeros(self.num_actions),
dtype = self.tfcast_type)

 # learning rate
 self.step_count = tf.Variable(initial_value = 0, dtype =
self.tfcast_type)
 self.learning_rate = tf.train.exponential_decay(self.learning_rate,

Playing Doom with a Deep Recurrent Q Network Chapter 9

[193]

 self.step_count,
 self.loss_decay_steps,
 self.loss_decay_steps,
 staircase = False)
 # now let us build the network

 # first convolutional layer
 self.conv1 = tf.nn.conv2d(input = tf.reshape(self.input, shape =
(1, self.input_shape[0], self.input_shape[1], self.input_shape[2])), filter
= self.features1, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu1 = tf.nn.relu(self.conv1)
 self.pool1 = tf.nn.max_pool(self.relu1, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # second convolutional layer
 self.conv2 = tf.nn.conv2d(input = self.pool1, filter =
self.features2, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu2 = tf.nn.relu(self.conv2)
 self.pool2 = tf.nn.max_pool(self.relu2, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # third convolutional layer
 self.conv3 = tf.nn.conv2d(input = self.pool2, filter =
self.features3, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu3 = tf.nn.relu(self.conv3)
 self.pool3 = tf.nn.max_pool(self.relu3, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # add dropout and reshape the input
 self.drop1 = tf.nn.dropout(self.pool3, self.dropout_probability[0])
 self.reshaped_input = tf.reshape(self.drop1, shape = [1, -1])

 # now we build the recurrent neural network, which takes the input
from the last layer of the convolutional network
 self.h = tf.tanh(tf.matmul(self.reshaped_input, self.rW) +
tf.matmul(self.h, self.rU) + self.rb)
 self.o = tf.nn.softmax(tf.matmul(self.h, self.rV) + self.rc)

 # add drop out to RNN
 self.drop2 = tf.nn.dropout(self.o, self.dropout_probability[1])
 # we feed the result of RNN to the feed forward layer

Playing Doom with a Deep Recurrent Q Network Chapter 9

[194]

 self.output = tf.reshape(tf.matmul(self.drop2, self.fW) + self.fb,
shape = [-1, 1])
 self.prediction = tf.argmax(self.output)

 # compute loss
 self.loss = tf.reduce_mean(tf.square(self.target_vector -
self.output))
 # we use Adam optimizer for minimizing the error
 self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
 # compute gradients of the loss and update the gradients
 self.gradients = self.optimizer.compute_gradients(self.loss)
 self.update = self.optimizer.apply_gradients(self.gradients)

 self.parameters = (self.features1, self.features2, self.features3,
 self.rW, self.rU, self.rV, self.rb, self.rc,
 self.fW, self.fb)

Now we define the ExperienceReplay class to implement the experience replay buffer.
We store all the agent's experience, that is, state, action, and rewards in the experience
replay buffer, and we sample this minibatch of experience for training the network:

class ExperienceReplay():
 def __init__(self, buffer_size):
 # buffer for holding the transition
 self.buffer = []
 # size of the buffer
 self.buffer_size = buffer_size
 # we remove the old transition if the buffer size has reached it's
limit. Think off the buffer as a queue, when the new
 # one comes, the old one goes off
 def appendToBuffer(self, memory_tuplet):
 if len(self.buffer) > self.buffer_size:
 for i in range(len(self.buffer) - self.buffer_size):
 self.buffer.remove(self.buffer[0])
 self.buffer.append(memory_tuplet)
 # define a function called sample for sampling some random n number of
transitions
 def sample(self, n):
 memories = []
 for i in range(n):
 memory_index = np.random.randint(0, len(self.buffer))
 memories.append(self.buffer[memory_index])
 return memories

Playing Doom with a Deep Recurrent Q Network Chapter 9

[195]

Now, we define the train function for training our network:

def train(num_episodes, episode_length, learning_rate, scenario =
"deathmatch.cfg", map_path = 'map02', render = False):
 # discount parameter for Q-value computation
 discount_factor = .99
 # frequency for updating the experience in the buffer
 update_frequency = 5
 store_frequency = 50
 # for printing the output
 print_frequency = 1000

 # initialize variables for storing total rewards and total loss
 total_reward = 0
 total_loss = 0
 old_q_value = 0

 # initialize lists for storing the episodic rewards and losses
 rewards = []
 losses = []

 # okay, now let us get to the action!
 # first, we initialize our doomgame environment
 game = DoomGame()
 # specify the path where our scenario file is located
 game.set_doom_scenario_path(scenario)
 # specify the path of map file
 game.set_doom_map(map_path)

 # then we set screen resolution and screen format
 game.set_screen_resolution(ScreenResolution.RES_256X160)
 game.set_screen_format(ScreenFormat.RGB24)

 # we can add particles and effects we needed by simply setting them to
true or false
 game.set_render_hud(False)
 game.set_render_minimal_hud(False)
 game.set_render_crosshair(False)
 game.set_render_weapon(True)
 game.set_render_decals(False)
 game.set_render_particles(False)
 game.set_render_effects_sprites(False)
 game.set_render_messages(False)
 game.set_render_corpses(False)
 game.set_render_screen_flashes(True)

 # now we will specify buttons that should be available to the agent
 game.add_available_button(Button.MOVE_LEFT)

Playing Doom with a Deep Recurrent Q Network Chapter 9

[196]

 game.add_available_button(Button.MOVE_RIGHT)
 game.add_available_button(Button.TURN_LEFT)
 game.add_available_button(Button.TURN_RIGHT)
 game.add_available_button(Button.MOVE_FORWARD)
 game.add_available_button(Button.MOVE_BACKWARD)
 game.add_available_button(Button.ATTACK)
 # okay, now we will add one more button called delta. The preceding
button will only
 # work like keyboard keys and will have only boolean values.

 # so we use delta button, which emulates a mouse device which will have
positive and negative values
 # and it will be useful in environment for exploring
 game.add_available_button(Button.TURN_LEFT_RIGHT_DELTA, 90)
 game.add_available_button(Button.LOOK_UP_DOWN_DELTA, 90)

 # initialize an array for actions
 actions = np.zeros((game.get_available_buttons_size(),
game.get_available_buttons_size()))
 count = 0
 for i in actions:
 i[count] = 1
 count += 1
 actions = actions.astype(int).tolist()

 # then we add the game variables, ammo, health, and killcount
 game.add_available_game_variable(GameVariable.AMMO0)
 game.add_available_game_variable(GameVariable.HEALTH)
 game.add_available_game_variable(GameVariable.KILLCOUNT)

 # we set episode_timeout to terminate the episode after some time step
 # we also set episode_start_time which is useful for skipping initial
events
 game.set_episode_timeout(6 * episode_length)
 game.set_episode_start_time(10)
 game.set_window_visible(render)
 # we can also enable sound by setting set_sound_enable to true
 game.set_sound_enabled(False)

 # we set living reward to 0, which rewards the agent for each move it
does even though the move is not useful
 game.set_living_reward(0)

 # doom has different modes such as player, spectator, asynchronous
player, and asynchronous spectator
 # in spectator mode humans will play and agent will learn from it.
 # in player mode, the agent actually plays the game, so we use player

Playing Doom with a Deep Recurrent Q Network Chapter 9

[197]

mode.
 game.set_mode(Mode.PLAYER)

 # okay, So now we, initialize the game environment
 game.init()

 # now, let us create instance to our DRQN class and create our both
actor and target DRQN networks
 actionDRQN = DRQN((160, 256, 3), game.get_available_buttons_size() - 2,
learning_rate)
 targetDRQN = DRQN((160, 256, 3), game.get_available_buttons_size() - 2,
learning_rate)
 # we will also create an instance to the ExperienceReplay class with
the buffer size of 1000
 experiences = ExperienceReplay(1000)

 # for storing the models
 saver = tf.train.Saver({v.name: v for v in actionDRQN.parameters},
max_to_keep = 1)

 # now let us start the training process
 # we initialize variables for sampling and storing transitions from the
experience buffer
 sample = 5
 store = 50
 # start the tensorflow session
 with tf.Session() as sess:
 # initialize all tensorflow variables
 sess.run(tf.global_variables_initializer())
 for episode in range(num_episodes):
 # start the new episode
 game.new_episode()
 # play the episode till it reaches the episode length
 for frame in range(episode_length):
 # get the game state
 state = game.get_state()
 s = state.screen_buffer
 # select the action
 a = actionDRQN.prediction.eval(feed_dict =
{actionDRQN.input: s})[0]
 action = actions[a]
 # perform the action and store the reward
 reward = game.make_action(action)
 # update total reward
 total_reward += reward

 # if the episode is over then break
 if game.is_episode_finished():

Playing Doom with a Deep Recurrent Q Network Chapter 9

[198]

 break
 # store the transition to our experience buffer
 if (frame % store) == 0:
 experiences.appendToBuffer((s, action, reward))

 # sample experience from the experience buffer
 if (frame % sample) == 0:
 memory = experiences.sample(1)
 mem_frame = memory[0][0]
 mem_reward = memory[0][2]
 # now, train the network
 Q1 = actionDRQN.output.eval(feed_dict =
{actionDRQN.input: mem_frame})
 Q2 = targetDRQN.output.eval(feed_dict =
{targetDRQN.input: mem_frame})

 # set learning rate
 learning_rate = actionDRQN.learning_rate.eval()

 # calculate Q value
 Qtarget = old_q_value + learning_rate * (mem_reward +
discount_factor * Q2 - old_q_value)
 # update old Q value
 old_q_value = Qtarget

 # compute Loss
 loss = actionDRQN.loss.eval(feed_dict =
{actionDRQN.target_vector: Qtarget, actionDRQN.input: mem_frame})
 # update total loss
 total_loss += loss

 # update both networks
 actionDRQN.update.run(feed_dict =
{actionDRQN.target_vector: Qtarget, actionDRQN.input: mem_frame})
 targetDRQN.update.run(feed_dict =
{targetDRQN.target_vector: Qtarget, targetDRQN.input: mem_frame})

 rewards.append((episode, total_reward))
 losses.append((episode, total_loss))

 print("Episode %d - Reward = %.3f, Loss = %.3f." % (episode,
total_reward, total_loss))

 total_reward = 0
 total_loss = 0

Playing Doom with a Deep Recurrent Q Network Chapter 9

[199]

Let us train for 10000 episodes, where each episode has a length of 300:

train(num_episodes = 10000, episode_length = 300, learning_rate = 0.01,
render = True)

When you run the program, you can see the output shown as follows, and you can see how
our agent is learning through episodes:

DARQN
We have improved our DQN architecture by adding a recurrent layer, which captures
temporal dependency, and we called it DRQN. Do you think we can improve our DRQN
architecture further? Yes. We can further improve our DRQN architecture by adding the
attention layer on top of the convolutional layer. So, what is the function of the attention
layer? Attention implies the literal meaning of the word. Attention mechanisms are widely
used in image captioning, object detection, and so on. Consider the task of neural networks
captioning the image; to understand what is in the image, the network has to give attention
to the specific object in the image for generating the caption.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[200]

Similarly, when we add the attention layer to our DRQN, we can select and pay attention to
small regions of the image, and ultimately this reduces the number of parameters in the
network and also reduces the training and testing time. Unlike DRQN, LSTM layers in
DARQN not only stored previous state information for taking the next optimal action; it
also stores information for deciding which region of an image to focus on next.

Architecture of DARQN
The architecture of DARQN is shown as follows:

It consists of three layers; convolutional, attention, and LSTM recurrent layers. The game
screen is fed as the image to the convolutional network. The convolutional network
processes the image and produces the feature maps. The feature maps then feed into the
attention layer. The attention layer transforms them into a vector and results in their linear
combination, called context vectors. The context vectors, along with previous hidden states,
are then passed to the LSTM layer. The LSTM layer gives two outputs; in one, it gives the Q
value for deciding what action to perform in a state, and in the other, it helps the attention
network decide what region of the image to focus on in the next time step so that better
context vectors can be generated.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[201]

The attention is of two types:

Soft attention: We know that feature maps produced by the convolutional layer
are fed as an input to the attention layer, which then produces the context vector.
With soft attention, these context vectors are simply the weighted average of all
the output (feature maps) produced by the convolutional layer. Weights are
chosen according to the relative importance of the features.
Hard attention: With hard attention, we focus only on the particular location of
an image at a time step t according to some location selection policy π. This
policy is represented by a neural network whose weights are the policy
parameters and the output of the network is the location selection probability.
However, hard attentions are not much better than soft attentions.

Summary
In this chapter, we learned how DRQN is used to remember information about the
previous states and how it overcomes the problem of partially observable MDP. We have
seen how to train our agent to play the game Doom using a DRQN algorithm. We have also
learned about DARQN as an improvement to DRQN, which adds an attention layer on top
of the convolution layer. Following this, we saw the two types of attention mechanism;
namely, soft and hard attention.

In the next chapter, Chapter 10, Asynchronous Advantage Actor Critic Network, we will learn
about another interesting deep reinforcement learning algorithm called Asynchronous
Advantage Actor Critic network.

Questions
The question list is as follows:

What is the difference between DQN and DRQN?1.
What are the shortcomings of DQN?2.
How do we set up an experience replay in DQN?3.
What is the difference between DRQN and DARQN?4.
Why do we need DARQN?5.
What are the different types of attention mechanism?6.
Why do we set a living reward in Doom?7.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[202]

Further reading
Consider the following to further your knowledge:

DRQN paper: https://arxiv.org/pdf/1507.06527.pdf
Playing the FPS game using DRQN: https://arxiv.org/pdf/1609.05521.pdf

DARQN paper: https://arxiv.org/pdf/1512.01693.pdf

https://arxiv.org/pdf/1507.06527.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf

10
The Asynchronous Advantage

Actor Critic Network
In the previous chapters, we have seen how cool a Deep Q Network (DQN) is and how it
succeeded in generalizing its learning to play a series of Atari games with a human level
performance. But the problem we faced is that it required a large amount of computation
power and training time. So, Google's DeepMind introduced a new algorithm called
the Asynchronous Advantage Actor Critic (A3C) algorithm, which dominates the other
deep reinforcement learning algorithms, as it requires less computation power and training
time. The main idea behind A3C is that it uses several agents for learning in parallel and
aggregates their overall experience. In this chapter, we will see how A3C networks work.
Following this, we will learn how to build an agent to drive up a mountain using A3C.

In this chapter, you will learn the following:

The Asynchronous Advantage Actor Critic Algorithm
The three As
The architecture of A3C
How A3C works
Driving up a mountain with A3C
Visualization in TensorBoard

The Asynchronous Advantage Actor Critic Network Chapter 10

[204]

The Asynchronous Advantage Actor Critic
The A3C network came as a storm and took over the DQN. Aside of the previously stated
advantages, it also yields good accuracy compared to other algorithms. It works well in
both continuous and discrete action spaces. It uses several agents, and each agent learns in
parallel with a different exploration policy in copies of the actual environment. Then, the
experience obtained from these agents is aggregated to the global agent. The global agent is
also called a master network or global network and other agents are also called the
workers. Now, we will see in detail how A3C works and how it differs from the DQN
algorithm.

The three As
Before diving in, what does A3C mean? What do the three As signify?

In A3C, the first A, Asynchronous, implies how it works. Instead of having a single agent
that tries to learn the optimal policy such as in DQN, here, we have multiple agents that
interact with the environment. Since we have multiple agents interacting to the
environment at the same time, we provide copies of the environment to every agent so that
each agent can interact with its own copy of the environment. So, all these multiple agents
are called worker agents and we have a separate agent called global network that all the
agents report to. The global network aggregates the learning.

The second A is Advantage; we have seen what an advantage function is while discussing
the dueling network architecture of DQN. The advantage function can be defined as the
difference between the Q function and the value function. We know that the Q function
specifies how good the action is in a state and the value function specifies how good the
state is. Now, think intuitively; what does the difference between these two imply? It tells
us how good it is for an agent to perform an action a in a state s compared to all other
actions.

The third A is Actor Critic; the architecture has two types of network, actor and critic. The
role of the actor is to learn a policy and the role of the critic is to evaluate how good the
policy learned by the actor is.

The Asynchronous Advantage Actor Critic Network Chapter 10

[205]

The architecture of A3C
Now, let's look at the architecture of A3C. Look at the following diagram:

We can understand how A3C works by just looking at the preceding diagram. As we
discussed, we can see there are multiple worker agents each interacting with its own copies
of the environment. A worker then learns policy and calculates the gradient of the policy
loss and updates the gradients to the global network. This global network is updated
simultaneously by every agent. One of the advantages of A3C is that, unlike DQN, we don't
use experience replay memory here. In fact, that it is one of the greatest advantages of an
A3C network. Since we have multiple agents interacting with the environment and
aggregating the information to the global network, there will be low to no correlation
between the experience. Experience replay needs a lot of memory holding all of the
experience. As A3C doesn't need that, our storage space and computation time will be
reduced.

The Asynchronous Advantage Actor Critic Network Chapter 10

[206]

How A3C works
First, the worker agent resets the global network, and then they start interacting with the
environment. Each worker follows a different exploration policy to learn an optimal policy.
Following this, they compute value and policy loss and then they calculate the gradient of
the loss and update the gradients to the global network. The cycle continues as the worker
agent starts resetting the global network and repeats the same process. Before looking at the
value and policy loss function, we will see how the advantage function is calculated. As we
know, advantage is the difference between the Q function and the value function:

Since we don't actually calculate the Q value directly in A3C, we make use of discounted
return as an estimate of the Q value. The discounted return R can be written as follows:

We replace the Q function with the discounted return R as follows:

Now, we can write our value loss as the squared difference between the discounted return
and the value of a state:

And the policy loss can be defined as follows:

Okay, what is that new term H(π)? It is the entropy term. It is used to ensure sufficient
exploration of policy. Entropy tells us the spread of action probabilities. When the entropy
value is high, every action's probability will be the same, so the agent will be unsure as to
which action to perform, and when the entropy value is lowered, one action will have a
higher probability than the others and the agent can pick up the action that has this high
probability. Thus, adding entropy to the loss function encourages the agent to explore
further and avoid getting stuck at the local optima.

The Asynchronous Advantage Actor Critic Network Chapter 10

[207]

Driving up a mountain with A3C
Let's understand A3C with a mountain car example. Our agent is the car and it is placed
between two mountains. The goal of our agent is to drive up the mountain on the right.
However, the car can't drive up the mountain in one pass; it has to drive up back and forth
to build the momentum. A high reward will be assigned if our agent spends less energy on
driving up. Credits for the code used in this section goes to Stefan Boschenriedter (https:/
/github.com/stefanbo92/A3C-Continuous). The environment is shown as follows:

Okay, let's get to the coding! The complete code is available as the Jupyter notebook with
an explanation here (https://github.com/sudharsan13296/Hands-On-Reinforcement-
Learning-With-Python/blob/master/10.
%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.
5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb).

First, let's import the necessary libraries:

import gym
import multiprocessing
import threading
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
import tensorflow as tf

https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb

The Asynchronous Advantage Actor Critic Network Chapter 10

[208]

Now, we will initialize all our parameters:

number of worker agents
no_of_workers = multiprocessing.cpu_count()

maximum number of steps per episode
no_of_ep_steps = 200

total number of episodes
no_of_episodes = 2000

global_net_scope = 'Global_Net'

sets how often the global network should be updated
update_global = 10

discount factor
gamma = 0.90

entropy factor
entropy_beta = 0.01

learning rate for actor
lr_a = 0.0001

learning rate for critic
lr_c = 0.001

boolean for rendering the environment
render=False

directory for storing logs
log_dir = 'logs'

Initialize our MountainCar environment:

env = gym.make('MountainCarContinuous-v0')
env.reset()

Get the number of states and actions, and also the action_bound:

no_of_states = env.observation_space.shape[0]
no_of_actions = env.action_space.shape[0]
action_bound = [env.action_space.low, env.action_space.high]

The Asynchronous Advantage Actor Critic Network Chapter 10

[209]

We will define our Actor Critic network in an ActorCritic class. As usual, we first
understand the code of every function in a class and see the final code as a whole at the
end. Comments are added to each line of code for better understanding. We will look into
the clean uncommented whole code at the end:

class ActorCritic(object):
 def __init__(self, scope, sess, globalAC=None):
 # first we initialize the session and RMS prop optimizer for both
 # our actor and critic networks
 self.sess=sess
 self.actor_optimizer = tf.train.RMSPropOptimizer(lr_a,
name='RMSPropA')
 self.critic_optimizer = tf.train.RMSPropOptimizer(lr_c,
name='RMSPropC')

 # now, if our network is global then,
 if scope == global_net_scope:
 with tf.variable_scope(scope):
 # initialize states and build actor and critic network
 self.s = tf.placeholder(tf.float32, [None, no_of_states],
'S')
 # get the parameters of actor and critic networks
 self.a_params, self.c_params = self._build_net(scope)[-2:]
 # if our network is local then,
 else:
 with tf.variable_scope(scope):
 # initialize state, action, and also target value
 # as v_target
 self.s = tf.placeholder(tf.float32, [None, no_of_states],
'S')
 self.a_his = tf.placeholder(tf.float32, [None,
no_of_actions], 'A')
 self.v_target = tf.placeholder(tf.float32, [None, 1],
'Vtarget')
 # since we are in continuous actions space,
 # we will calculate
 # mean and variance for choosing action
 mean, var, self.v, self.a_params, self.c_params =
self._build_net(scope)

 # then we calculate td error as the difference
 # between v_target - v
 td = tf.subtract(self.v_target, self.v, name='TD_error')

 # minimize the TD error
 with tf.name_scope('critic_loss'):
 self.critic_loss = tf.reduce_mean(tf.square(td))

The Asynchronous Advantage Actor Critic Network Chapter 10

[210]

 # update the mean and var value by multiplying mean
 # with the action bound and adding var with 1e-4

 with tf.name_scope('wrap_action'):
 mean, var = mean * action_bound[1], var + 1e-4
 # we can generate distribution using this updated
 # mean and var
 normal_dist = tf.contrib.distributions.Normal(mean, var)
 # now we shall calculate the actor loss.
 # Recall the loss function.
 with tf.name_scope('actor_loss'):
 # calculate first term of loss which is log(pi(s))
 log_prob = normal_dist.log_prob(self.a_his)
 exp_v = log_prob * td
 # calculate entropy from our action distribution
 # for ensuring exploration
 entropy = normal_dist.entropy()
 # we can define our final loss as
 self.exp_v = exp_v + entropy_beta * entropy
 # then, we try to minimize the loss
 self.actor_loss = tf.reduce_mean(-self.exp_v)
 # now, we choose an action by drawing from the
 # distribution and clipping it between action bounds,
 with tf.name_scope('choose_action'):
 self.A =
tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0),
action_bound[0], action_bound[1])
 # calculate gradients for both of our actor
 # and critic networks,
 with tf.name_scope('local_grad'):

 self.a_grads = tf.gradients(self.actor_loss,
self.a_params)
 self.c_grads = tf.gradients(self.critic_loss,
self.c_params)

 # now, we update our global network weights,
 with tf.name_scope('sync'):
 # pull the global network weights to the local networks
 with tf.name_scope('pull'):
 self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p
in zip(self.a_params, globalAC.a_params)]
 self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p
in zip(self.c_params, globalAC.c_params)]
 # push the local gradients to the global network
 with tf.name_scope('push'):
 self.update_a_op =
self.actor_optimizer.apply_gradients(zip(self.a_grads, globalAC.a_params))

The Asynchronous Advantage Actor Critic Network Chapter 10

[211]

 self.update_c_op =
self.critic_optimizer.apply_gradients(zip(self.c_grads, globalAC.c_params))

 # next, we define a function called _build_net for building
 # our actor and critic network
 def _build_net(self, scope):
 # initialize weights
 w_init = tf.random_normal_initializer(0., .1)
 with tf.variable_scope('actor'):
 l_a = tf.layers.dense(self.s, 200, tf.nn.relu6,
kernel_initializer=w_init, name='la')
 mean = tf.layers.dense(l_a, no_of_actions,
tf.nn.tanh,kernel_initializer=w_init, name='mean')
 var = tf.layers.dense(l_a, no_of_actions, tf.nn.softplus,
kernel_initializer=w_init, name='var')
 with tf.variable_scope('critic'):
 l_c = tf.layers.dense(self.s, 100, tf.nn.relu6,
kernel_initializer=w_init, name='lc')
 v = tf.layers.dense(l_c, 1, kernel_initializer=w_init,
name='v')
 a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope + '/actor')
 c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope + '/critic')
 return mean, var, v, a_params, c_params
 # update the local gradients to the global network
 def update_global(self, feed_dict):
 self.sess.run([self.update_a_op, self.update_c_op], feed_dict)
 # get the global parameters to the local networks
 def pull_global(self):
 self.sess.run([self.pull_a_params_op, self.pull_c_params_op])
 # select action
 def choose_action(self, s):
 s = s[np.newaxis, :]
 return self.sess.run(self.A, {self.s: s})[0]

Now, we will initialize the Worker class:

class Worker(object):
 def __init__(self, name, globalAC, sess):
 # initialize environment for each worker
 self.env = gym.make('MountainCarContinuous-v0').unwrapped
 self.name = name
 # create an ActorCritic agent for each worker
 self.AC = ActorCritic(name, sess, globalAC)
 self.sess=sess
 def work(self):

The Asynchronous Advantage Actor Critic Network Chapter 10

[212]

 global global_rewards, global_episodes
 total_step = 1

 # store state, action, reward
 buffer_s, buffer_a, buffer_r = [], [], []
 # loop if the coordinator is active and the global
 # episode is less than the maximum episode
 while not coord.should_stop() and global_episodes < no_of_episodes:
 # initialize the environment by resetting
 s = self.env.reset()
 # store the episodic reward
 ep_r = 0
 for ep_t in range(no_of_ep_steps):
 # Render the environment for only worker 1
 if self.name == 'W_0' and render:
 self.env.render()
 # choose the action based on the policy
 a = self.AC.choose_action(s)

 # perform the action (a), receive reward (r),
 # and move to the next state (s_)
 s_, r, done, info = self.env.step(a)
 # set done as true if we reached maximum step per episode
 done = True if ep_t == no_of_ep_steps - 1 else False
 ep_r += r
 # store the state, action, and rewards in the buffer
 buffer_s.append(s)
 buffer_a.append(a)
 # normalize the reward
 buffer_r.append((r+8)/8)
 # we update the global network after a particular time step
 if total_step % update_global == 0 or done:
 if done:
 v_s_ = 0
 else:
 v_s_ = self.sess.run(self.AC.v, {self.AC.s:
s_[np.newaxis, :]})[0, 0]
 # buffer for target v
 buffer_v_target = []
 for r in buffer_r[::-1]:
 v_s_ = r + gamma * v_s_
 buffer_v_target.append(v_s_)
 buffer_v_target.reverse()
 buffer_s, buffer_a, buffer_v_target =
np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(buffer_v_target)
 feed_dict = {
 self.AC.s: buffer_s,
 self.AC.a_his: buffer_a,

The Asynchronous Advantage Actor Critic Network Chapter 10

[213]

 self.AC.v_target: buffer_v_target,
 }
 # update global network
 self.AC.update_global(feed_dict)
 buffer_s, buffer_a, buffer_r = [], [], []
 # get global parameters to local ActorCritic
 self.AC.pull_global()
 s = s_
 total_step += 1
 if done:
 if len(global_rewards) < 5:
 global_rewards.append(ep_r)
 else:
 global_rewards.append(ep_r)
 global_rewards[-1] =(np.mean(global_rewards[-5:]))
 global_episodes += 1
 break

Now, let's start the TensorFlow session and run our model:

create a list for string global rewards and episodes
global_rewards = []
global_episodes = 0

start tensorflow session
sess = tf.Session()

with tf.device("/cpu:0"):
create an instance to our ActorCritic Class
 global_ac = ActorCritic(global_net_scope,sess)
 workers = []
 # loop for each worker
 for i in range(no_of_workers):
 i_name = 'W_%i' % i
 workers.append(Worker(i_name, global_ac,sess))

coord = tf.train.Coordinator()
sess.run(tf.global_variables_initializer())

log everything so that we can visualize the graph in tensorboard

if os.path.exists(log_dir):
 shutil.rmtree(log_dir)

tf.summary.FileWriter(log_dir, sess.graph)

worker_threads = []

The Asynchronous Advantage Actor Critic Network Chapter 10

[214]

#start workers

for worker in workers:

 job = lambda: worker.work()
 t = threading.Thread(target=job)
 t.start()
 worker_threads.append(t)
coord.join(worker_threads)

The output is shown as follows. If you run the program, you can see how our agent is
learning to climb the mountain over several episodes:

The Asynchronous Advantage Actor Critic Network Chapter 10

[215]

Visualization in TensorBoard
Let's visualize our network in TensorBoard. To launch TensorBoard, open your Terminal
and type the following:

tensorboard --logdir=logs --port=6007 --host=127.0.0.1

This is our A3C network. We have one global network and four workers:

The Asynchronous Advantage Actor Critic Network Chapter 10

[216]

Let's expand our global network; you can see we have one actor and one critic:

The Asynchronous Advantage Actor Critic Network Chapter 10

[217]

Okay, what is really going on in workers? Let's expand our worker network. You can see
how the worker nodes are performing:

The Asynchronous Advantage Actor Critic Network Chapter 10

[218]

What about the sync node? What is that doing? The sync node pushes the local gradients
from the local to the global network and pulls gradients from the global to the local
network:

Summary
In this chapter, we learned how the A3C network works. In A3C, Asynchronous implies
multiple agents working independently by interacting with multiple copies of the
environment, Advantage implies the advantage function, which is the difference between
the Q function and the value function, and Actor Critic refers to the Actor Critic network,
where the actor network is responsible for generating a policy and the critic network
evaluates the policy generated by the actor network. We have seen how A3C works, and
saw how to solve a mountain car problem using the algorithm.

In the next chapter, Chapter 11, Policy Gradients and Optimization, we will see policy
gradient methods that directly optimize the policy without requiring the Q function.

The Asynchronous Advantage Actor Critic Network Chapter 10

[219]

Questions
The question list is as follows:

What is A3C?1.
What do the three As signify?2.
Name one advantage of A3N over DQN3.
What is the difference between global and worker nodes?4.
Why do we entropy to our loss function?5.
Explain the workings of A3C.6.

Further reading
You can also refer to these papers:

A3C paper: https://arxiv.org/pdf/1602.01783.pdf

Vision enhanced A3C: http://cs231n.stanford.edu/reports/2017/pdfs/617.
pdf

https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf

11
Policy Gradients and

Optimization
In the last three chapters, we have learned about various deep reinforcement learning
algorithms, such as Deep Q Network (DQN), Deep Recurrent Q Network (DRQN), and
the Asynchronous Advantage Actor Critic (A3C) network. In all the algorithms, our goal is
to find the correct policy so that we can maximize the rewards. We use the Q function to
find the optimal policy as the Q function tells us which action is the best action to perform
in a state. Do you think we can directly find the optimal policy without using Q function?
Yes. We can. In policy gradient methods, we can find the optimal policy without using the
Q function.

In this chapter, we will learn about policy gradients in detail. We will also look at different
types of policy gradient methods such as deep deterministic policy gradients followed by
state-of-the-art policy optimization methods such as trust region policy optimization and
proximal policy optimization.

In this chapter, you will learn the following:

Policy gradients
Lunar lander using policy gradients
Deep deterministic policy gradients
Swinging a pendulum using the deep deterministic policy gradient (DDPG)
Trust region policy optimization
Proximal policy optimization

Policy Gradients and Optimization Chapter 11

[221]

Policy gradient
The policy gradient is one of the amazing algorithms in reinforcement learning (RL) where
we directly optimize the policy parameterized by some parameter . So far, we have used
the Q function for finding the optimal policy. Now we will see how to find the optimal
policy without the Q function. First, let's define the policy function as , that is, the
probability of taking an action a given the state s. We parameterize the policy via a
parameter as , which allows us to determine the best action in a state.

The policy gradient method has several advantages, and it can handle the continuous
action space where we have an infinite number of actions and states. Say we are building a
self-driving car. A car should be driven without hitting any other vehicles. We get a
negative reward when the car hits a vehicle and a positive reward when the car does not hit
any other vehicle. We update our model parameters in such a way that we receive only a
positive reward so that our car will not hit any other vehicles. This is the basic idea of
policy gradient: we update the model parameter in a way that maximizes the reward. Let's
look at this in detail.

We use a neural network for finding the optimal policy and we call this network a policy
network. The input to the policy network will be the state and the output will be the
probability of each action in that state. Once we have this probability, we can sample an
action from this distribution and perform that action in the state. But the action we sampled
might not be the correct action to perform in the state. That's fine—we perform the action
and store the reward. Similarly, we perform actions in each state by sampling an action
from the distribution and we store the reward. Now, this becomes our training data. We
perform gradient descent and update gradients in a such a way that actions yielding high
reward in a state will have a high probability and actions yielding low reward will have a
low probability. What is the loss function? Here, we use softmax cross entropy loss and
then we multiply the loss by the reward value.

Lunar Lander using policy gradients
Say our agent is driving the space vehicle and the goal of our agent is to land correctly on
the landing pad. If our agent (lander) lands away from the landing pad, then it loses the
reward and the episode will get terminated if the agent crashes or comes to rest. Four
discrete actions available in the environment are do nothing, fire left orientation engine, fire
main engine, and fire right orientation engine.

Policy Gradients and Optimization Chapter 11

[222]

Now we will see how to train our agents to correctly land on the landing pad with policy
gradients. Credit for the code used in this section goes to Gabriel (https://github.com/
gabrielgarza/openai-gym-policy-gradient):

First, we import the necessary libraries:

import tensorflow as tf
import numpy as np
from tensorflow.python.framework import ops
import gym
import numpy as np
import time

Then we define the PolicyGradient class, which implements the policy gradient
algorithm. Let's break down the class and see each function separately. You can look at the
whole program as a Jupyter notebook (https://github.com/sudharsan13296/Hands-On-
Reinforcement-Learning-With-Python/blob/master/11.
%20Policy%20Gradients%20and%20Optimization/11.
2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb):

class PolicyGradient:
 # first we define the __init__ method where we initialize all variables

https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb

Policy Gradients and Optimization Chapter 11

[223]

 def __init__(self, n_x,n_y,learning_rate=0.01, reward_decay=0.95):
 # number of states in the environment
 self.n_x = n_x
 # number of actions in the environment
 self.n_y = n_y
 # learning rate of the network
 self.lr = learning_rate
 # discount factor
 self.gamma = reward_decay
 # initialize the lists for storing observations,
 # actions and rewards
 self.episode_observations, self.episode_actions,
self.episode_rewards = [], [], []
 # we define a function called build_network for
 # building the neural network
 self.build_network()
 # stores the cost i.e loss
 self.cost_history = []
 # initialize tensorflow session
 self.sess = tf.Session()
 self.sess.run(tf.global_variables_initializer())

Next, we define a store_transition function which stores the transitions, that is, state,
action, and reward. We can use this information for training the network:

 def store_transition(self, s, a, r):
 self.episode_observations.append(s)
 self.episode_rewards.append(r)

 # store actions as list of arrays
 action = np.zeros(self.n_y)
 action[a] = 1
 self.episode_actions.append(action)

We define the choose_action function for choosing the action given the state:

 def choose_action(self, observation):

 # reshape observation to (num_features, 1)
 observation = observation[:, np.newaxis]

 # run forward propagation to get softmax probabilities
 prob_weights = self.sess.run(self.outputs_softmax, feed_dict =
{self.X: observation})

Policy Gradients and Optimization Chapter 11

[224]

 # select action using a biased sample this will return
 # the index of the action we have sampled
 action = np.random.choice(range(len(prob_weights.ravel())),
p=prob_weights.ravel())
 return action

We define the build_network function for building the neural network:

 def build_network(self):
 # placeholders for input x, and output y
 self.X = tf.placeholder(tf.float32, shape=(self.n_x, None),
name="X")
 self.Y = tf.placeholder(tf.float32, shape=(self.n_y, None),
name="Y")
 # placeholder for reward
 self.discounted_episode_rewards_norm = tf.placeholder(tf.float32,
[None,], name="actions_value")

 # we build 3 layer neural network with 2 hidden layers and
 # 1 output layer
 # number of neurons in the hidden layer
 units_layer_1 = 10
 units_layer_2 = 10
 # number of neurons in the output layer
 units_output_layer = self.n_y
 # now let us initialize weights and bias value using
 # tensorflow's tf.contrib.layers.xavier_initializer
 W1 = tf.get_variable("W1", [units_layer_1, self.n_x], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 b1 = tf.get_variable("b1", [units_layer_1, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 W2 = tf.get_variable("W2", [units_layer_2, units_layer_1],
initializer = tf.contrib.layers.xavier_initializer(seed=1))
 b2 = tf.get_variable("b2", [units_layer_2, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 W3 = tf.get_variable("W3", [self.n_y, units_layer_2], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 b3 = tf.get_variable("b3", [self.n_y, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))

 # and then, we perform forward propagation

 Z1 = tf.add(tf.matmul(W1,self.X), b1)
 A1 = tf.nn.relu(Z1)
 Z2 = tf.add(tf.matmul(W2, A1), b2)
 A2 = tf.nn.relu(Z2)
 Z3 = tf.add(tf.matmul(W3, A2), b3)
 A3 = tf.nn.softmax(Z3)

Policy Gradients and Optimization Chapter 11

[225]

 # as we require, probabilities, we apply softmax activation
 # function in the output layer,
 logits = tf.transpose(Z3)
 labels = tf.transpose(self.Y)
 self.outputs_softmax = tf.nn.softmax(logits, name='A3')

 # next we define our loss function as cross entropy loss
 neg_log_prob =
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
 # reward guided loss
 loss = tf.reduce_mean(neg_log_prob *
self.discounted_episode_rewards_norm)

 # we use adam optimizer for minimizing the loss
 self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)

Next, we define the discount_and_norm_rewards function which will result in the
discount and normalized reward:

 def discount_and_norm_rewards(self):
 discounted_episode_rewards = np.zeros_like(self.episode_rewards)
 cumulative = 0
 for t in reversed(range(len(self.episode_rewards))):
 cumulative = cumulative * self.gamma + self.episode_rewards[t]
 discounted_episode_rewards[t] = cumulative

 discounted_episode_rewards -= np.mean(discounted_episode_rewards)
 discounted_episode_rewards /= np.std(discounted_episode_rewards)
 return discounted_episode_rewards

Now we actually perform the learning:

 def learn(self):
 # discount and normalize episodic reward
 discounted_episode_rewards_norm = self.discount_and_norm_rewards()

 # train the network
 self.sess.run(self.train_op, feed_dict={
 self.X: np.vstack(self.episode_observations).T,
 self.Y: np.vstack(np.array(self.episode_actions)).T,
 self.discounted_episode_rewards_norm:
discounted_episode_rewards_norm,
 })

Policy Gradients and Optimization Chapter 11

[226]

 # reset the episodic data
 self.episode_observations, self.episode_actions,
self.episode_rewards = [], [], []

 return discounted_episode_rewards_norm

You can see the output as follows:

Deep deterministic policy gradient
In Chapter 8, Atari Games with Deep Q Network, we looked at how DQN works and we
applied DQNs to play Atari games. However, those are discrete environments where we
have a finite set of actions. Think of a continuous environment space like training a robot to
walk; in those environments it is not feasible to apply Q learning because finding a greedy
policy will require a lot of optimization at each and every step. Even if we make this
continuous environment discrete, we might lose important features and end up with a huge
set of action spaces. It is difficult to attain convergence when we have a huge action space.

Policy Gradients and Optimization Chapter 11

[227]

So we use a new architecture called Actor Critic with two networks—Actor and Critic. The
Actor Critic architecture combines the policy gradient and state action value functions. The
role of the Actor network is to determine the best actions in the state by tuning the
parameter , and the role of the Critic is to evaluate the action produced by the Actor. Critic
evaluates the Actor's action by computing the temporal difference error. That is, we
perform a policy gradient on an Actor network to select the actions and the Critic network
evaluates the action produced by the Actor network using the TD error. The Actor Critic
architecture is shown in the following diagram:

Similar to DQN, here we use an experience buffer, using which Actor and Critic networks
are trained by sampling a mini batch of experiences. We also use a separate target Actor
and Critic network for computing the loss.

For example, in a Pong game we will have different features of different scales such as
position, velocity, and so on. So we scale the features in a way that all the features will be in
the same scale. We use a method called batch normalization for scaling the features. It
normalizes all the features to have unit mean and variance. How do we explore new
actions? In a continuous environment, there will be n number of actions. To explore new
actions we add some noise N to the action produced by the Actor network. We generate
this noise using a process called the Ornstein-Uhlenbeck random process.

Now we will look at the DDPG algorithm in detail.

Let's say we have two networks: the Actor network and Critic network. We represent
the Actor network with which takes input as a state and results in the action where

 is the Actor network weights. We represent the Critic network as , which takes
an input as a state and action and returns the Q value where is the Critic network
weights.

Similarly, we define a target network for both the Actor network and Critic network as
 and respectively, where and are the weights of the target Actor

and Critic network.

Policy Gradients and Optimization Chapter 11

[228]

We update Actor network weights with policy gradients and the Critic network weight
with the gradients calculated from the TD error.

First, we select an action by adding the exploration noise N to the action produced by the
Actor network, such as . We perform this action in a state, s, receive a reward, r
and move to a new state, s'. We store this transition information in an experience replay
buffer.

After some iterations, we sample transitions from the replay buffer and train the network,
and then we calculate the target Q value . We compute
the TD error as:

Where M is the number of samples from the replay buffer that are used for training. We
update our Critic networks weights with gradients calculated from this loss L.

Similarly, we update our policy network weights using a policy gradient. Then we update
the weights of Actor and Critic network in the target network. We update the weights of
the target networks slowly, which promotes greater stability; it is called the soft
replacement:

Swinging a pendulum
We have a pendulum that starts in a random position, and the goal of our agent is to swing
the pendulum up so it stays upright. We will see how to use DDPG here. Credit for the
code used in this section goes to wshuail (https://github.com/wangshuailong/
reinforcement_learning_with_Tensorflow/tree/master/DDPG).

First, let's import the necessary libraries:

import tensorflow as tf
import numpy as np
import gym

https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG

Policy Gradients and Optimization Chapter 11

[229]

Next, we define the hyperparameters as follows:

number of steps in each episode
epsiode_steps = 500

learning rate for actor
lr_a = 0.001

learning rate for critic
lr_c = 0.002

discount factor
gamma = 0.9

soft replacement
alpha = 0.01

replay buffer size
memory = 10000

batch size for training
batch_size = 32
render = False

We will implement the DDPG algorithm in the DDPG class. We break down the class to see
each function. First, we initialize everything:

class DDPG(object):
 def __init__(self, no_of_actions, no_of_states, a_bound,):
 # initialize the memory with shape as no of actions, no of states
and our defined memory size
 self.memory = np.zeros((memory, no_of_states * 2 + no_of_actions +
1), dtype=np.float32)
 # initialize pointer to point to our experience buffer
 self.pointer = 0
 # initialize tensorflow session
 self.sess = tf.Session()
 # initialize the variance for OU process for exploring policies
 self.noise_variance = 3.0
 self.no_of_actions, self.no_of_states, self.a_bound =
no_of_actions, no_of_states, a_bound,
 # placeholder for current state, next state and rewards
 self.state = tf.placeholder(tf.float32, [None, no_of_states], 's')
 self.next_state = tf.placeholder(tf.float32, [None, no_of_states],
's_')
 self.reward = tf.placeholder(tf.float32, [None, 1], 'r')
 # build the actor network which has separate eval(primary)
 # and target network

Policy Gradients and Optimization Chapter 11

[230]

 with tf.variable_scope('Actor'):
 self.a = self.build_actor_network(self.state, scope='eval',
trainable=True)
 a_ = self.build_actor_network(self.next_state, scope='target',
trainable=False)
 # build the critic network which has separate eval(primary)
 # and target network
 with tf.variable_scope('Critic'):
 q = self.build_crtic_network(self.state, self.a, scope='eval',
trainable=True)
 q_ = self.build_crtic_network(self.next_state, a_,
scope='target', trainable=False)

 # initialize the network parameters
 self.ae_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Actor/eval')
 self.at_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Actor/target')
 self.ce_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Critic/eval')
 self.ct_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Critic/target')

 # update target value
 self.soft_replace = [[tf.assign(at, (1-alpha)*at+alpha*ae),
tf.assign(ct, (1-alpha)*ct+alpha*ce)]
 for at, ae, ct, ce in zip(self.at_params, self.ae_params,
self.ct_params, self.ce_params)]
 # compute target Q value, we know that Q(s,a) = reward + gamma *
 Q'(s',a')
 q_target = self.reward + gamma * q_
 # compute TD error i.e actual - predicted values
 td_error = tf.losses.mean_squared_error(labels=(self.reward + gamma
* q_), predictions=q)
 # train the critic network with adam optimizer
 self.ctrain = tf.train.AdamOptimizer(lr_c).minimize(td_error,
name="adam-ink", var_list = self.ce_params)
 # compute the loss in actor network
 a_loss = - tf.reduce_mean(q)
 # train the actor network with adam optimizer for
 # minimizing the loss
 self.atrain = tf.train.AdamOptimizer(lr_a).minimize(a_loss,
var_list=self.ae_params)

Policy Gradients and Optimization Chapter 11

[231]

 # initialize summary writer to visualize our network in tensorboard
 tf.summary.FileWriter("logs", self.sess.graph)
 # initialize all variables
 self.sess.run(tf.global_variables_initializer())

How do we select an action in DDPG? We select an action by adding noise to the action
space. We use the Ornstein-Uhlenbeck random process for generating noise:

 def choose_action(self, s):
 a = self.sess.run(self.a, {self.state: s[np.newaxis, :]})[0]
 a = np.clip(np.random.normal(a, self.noise_variance), -2, 2)
 return a

Then we define the learn function where the actual training happens. Here we select a
batch of states, actions, rewards, and the next state from the experience buffer. We
train Actor and Critic networks with that:

 def learn(self):
 # soft target replacement
 self.sess.run(self.soft_replace)

 indices = np.random.choice(memory, size=batch_size)
 batch_transition = self.memory[indices, :]
 batch_states = batch_transition[:, :self.no_of_states]
 batch_actions = batch_transition[:, self.no_of_states:
self.no_of_states + self.no_of_actions]
 batch_rewards = batch_transition[:, -self.no_of_states - 1: -
self.no_of_states]
 batch_next_state = batch_transition[:, -self.no_of_states:]

 self.sess.run(self.atrain, {self.state: batch_states})
 self.sess.run(self.ctrain, {self.state: batch_states, self.a:
batch_actions, self.reward: batch_rewards, self.next_state:
batch_next_state})

We define a store_transition function, that stores all the information in the buffer and
performs the learning:

 def store_transition(self, s, a, r, s_):
 trans = np.hstack((s,a,[r],s_))
 index = self.pointer % memory
 self.memory[index, :] = trans
 self.pointer += 1

 if self.pointer > memory:
 self.noise_variance *= 0.99995
 self.learn()

Policy Gradients and Optimization Chapter 11

[232]

We define the build_actor_network function for building our Actor network:

 def build_actor_network(self, s, scope, trainable):
 # Actor DPG
 with tf.variable_scope(scope):
 l1 = tf.layers.dense(s, 30, activation = tf.nn.tanh, name =
'l1', trainable = trainable)
 a = tf.layers.dense(l1, self.no_of_actions, activation =
tf.nn.tanh, name = 'a', trainable = trainable)
 return tf.multiply(a, self.a_bound, name = "scaled_a")

We define the build_ crtic_network function:

 def build_crtic_network(self, s, a, scope, trainable):
 # Critic Q-leaning
 with tf.variable_scope(scope):
 n_l1 = 30
 w1_s = tf.get_variable('w1_s', [self.no_of_states, n_l1],
trainable = trainable)
 w1_a = tf.get_variable('w1_a', [self.no_of_actions, n_l1],
trainable = trainable)
 b1 = tf.get_variable('b1', [1, n_l1], trainable = trainable)
 net = tf.nn.tanh(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1
)

 q = tf.layers.dense(net, 1, trainable = trainable)
 return q

Now, we initialize our gym environment using the make function:

env = gym.make("Pendulum-v0")
env = env.unwrapped
env.seed(1)

We get the number of states:

no_of_states = env.observation_space.shape[0]

We get the number of actions:

no_of_actions = env.action_space.shape[0]

Also, higher bound of the action:

a_bound = env.action_space.high

Policy Gradients and Optimization Chapter 11

[233]

Now, we create an object for our DDPG class:

ddpg = DDPG(no_of_actions, no_of_states, a_bound)

We initialize the list to store the total rewards:

total_reward = []

Set the number of episodes:

no_of_episodes = 300

Now, let's begin training:

for each episodes
for i in range(no_of_episodes):
 # initialize the environment
 s = env.reset()
 # episodic reward
 ep_reward = 0
 for j in range(epsiode_steps):
 env.render()

 # select action by adding noise through OU process
 a = ddpg.choose_action(s)
 # perform the action and move to the next state s
 s_, r, done, info = env.step(a)
 # store the the transition to our experience buffer
 # sample some minibatch of experience and train the network
 ddpg.store_transition(s, a, r, s_)
 # update current state as next state
 s = s_
 # add episodic rewards
 ep_reward += r
 if j == epsiode_steps-1:
 # store the total rewards
 total_reward.append(ep_reward)
 # print rewards obtained per each episode
 print('Episode:', i, ' Reward: %i' % int(ep_reward))
 break

Policy Gradients and Optimization Chapter 11

[234]

You will see the output as follows:

We can see the computation graph in TensorBoard:

Policy Gradients and Optimization Chapter 11

[235]

Trust Region Policy Optimization
Before understanding Trust Region Policy Optimization (TRPO), we need to understand
constrained policy optimization. We know that in RL agents learn by trial and error to
maximize the reward. To find the best policy, our agents will explore all different actions
and choose the one that gives a good reward. While exploring different actions there is a
very good chance that our agents will explore bad actions as well. But the biggest challenge
is when we allow our agents to learn in the real world and when the reward functions are
not properly designed. For example, consider an agent learning to walk without hitting any
obstacles. The agent will receive a negative reward if it gets hit by any obstacle and a
positive reward for not getting hit by any obstacle. To figure out the best policy, the agent
explores different actions. The agent also takes action, such as hitting an obstacle to check
whether it gives a good reward. But that is not safe for our agent; it is particularly unsafe
when an agent is learning in a real-world environment. So we introduce constraint-based
learning. We set a threshold and if the probability of hitting the obstacle is less than this
threshold, then we consider our agent safe, or else we consider our agent unsafe. A
constraint is added to make sure that our agent is in a safe region.

In TRPO, we iteratively improve the policy and we impose a constraint such that
the Kullback–Leibler (KL) divergence between an old policy and a new policy is to be less
than some constant . This constraint is called the trust region constraint.

So what is KL divergence? KL divergence tells us how two probability distributions are
different from each other. Since our policies are probability distribution over actions, KL
divergence tells us how far a new policy is from the old policy. Why do we have to keep the
distance between the old policy and new policy less than some constant ? Because we
don't want our new policy to drift apart from the old policy. So we impose a constraint to
keep the new policy near to the old policy. Again, why do we have to stay near the old
policy? When the new policy is far away from the old policy, then it will affect our agent's
learning performance and also lead to a completely different learning behavior. In a
nutshell, in TRPO, we take a step toward the direction that improves our policy, that is,
maximizes the reward, but we should also be sure that the trust region constraint is
satisfied. It uses conjugate gradient descent (http://www.idi.ntnu.no/~elster/tdt24/
tdt24-f09/cg.pdf) to optimize the network parameter while satisfying the
constraint. The algorithm guarantees monotonic policy improvement and has also achieved
excellent results in various continuous environments.

Now we will see how TRPO works mathematically; you can skip this section if you are not
interested in math.

http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf

Policy Gradients and Optimization Chapter 11

[236]

Get ready for some cool math.

Let 's specify the total expected discounted reward , as follows:

Now let's consider the new policy as ; it can be defined as the expected return of policy
 in terms of advantages over our old policy , as follows:

Okay, why are we using the advantages of the old policy? Because we are measuring how
good the new policy is with respect to the average performance of the old policy . We
can rewrite the preceding equation with a sum over states instead of timesteps as follows:

 is the discounted visitation frequencies, that is:

Policy Gradients and Optimization Chapter 11

[237]

If you see the preceding equation there is a complex dependency of on
and so it is difficult to optimize the equation. So we will introduce the local approximation

 to as follows:

 uses the visitation frequency rather than , that is, we ignore the changes in state
visitation frequency due to the change in policy. To put it in simple terms, we assume that
the state visitation frequency is not different for both the new and old policy. When we are
calculating the gradient of , which will also improve with respect to some parameter
we can't be sure how much big of a step to take.

Kakade and Langford proposed a new policy update method called conservative policy
iteration, shown as follows:

 ---- (1)

 is the new policy. is the old policy.

, that is, , is the policy which maximizes .

Kakade and Langford derived the following equation from (1) as follows:

 ---- (2)

C is the penalty coefficient and it is equal to , and denotes the KL
divergence between the old policy and the new policy.

If we look at the preceding equation (2) closely, we notice that our expected long-term
reward increases monotonically as long as the right-hand side is maximized.

Let's define this right-hand side term as , as follows:

 ---- (3)

Policy Gradients and Optimization Chapter 11

[238]

Substituting equation (3) in (2), we get:

 ---- (4)

Since we know that the KL divergence between the two same policies will be 0, we can
write:

 ----(5)

Combining equations (4) and (5), we can write:

In the preceding equation, we can understand that maximizing Mi guarantees the
maximization of our expected reward. So now our goal is to maximize Mi which in turn
maximizes our expected reward. Since we use parameterized policies, we replace with
 in our previous equation and we use to represent a policy that we want to improve, as
shown next:

But having a penalty coefficient C in the preceding equation will cause the step size to be
very small, which in turn slows down the updates. So, we impose a constraint on the KL
divergence's old policy and new policy, which is the trust region constraint, and it will help
us to find the optimal step size:

Now, the problem is KL divergence is imposed on every point in the state space and it is
really not feasible to solve when we have a high dimensional state space. So we use a
heuristic approximation which takes the average KL divergence as:

Policy Gradients and Optimization Chapter 11

[239]

So now, we can rewrite our preceding objective function with the average KL divergence
constraint as:

Expanding the value of L, we get the following:

In the preceding equation, we replace sum over states as expectation
 and we replace sum over actions by importance sampling estimator as:

Then, we substitute advantage target values with Q values .

So, our final objective function will become:

Optimizing the preceding mentioned objective function, which has a constraint, is called
constrained optimization. Our constraint is to keep the average KL divergence between the
old policy and new policy less than We use conjugate gradient descent for optimizing
the preceding function.

Policy Gradients and Optimization Chapter 11

[240]

Proximal Policy Optimization
Now we will look at another policy optimization algorithm called Proximal Policy
Optimization (PPO). It acts as an improvement to TRPO and has become the default RL
algorithm of choice in solving many complex RL problems due to its performance. It was
proposed by researchers at OpenAI for overcoming the shortcomings of TRPO. Recall the
surrogate objective function of TRPO. It is a constraint optimization problem where we
impose a constraint—that average KL divergence between the old and new policy should
be less than . But the problem with TRPO is that it requires a lot of computing power for
computing conjugate gradients to perform constrained optimization.

So, PPO modifies the objective function of TRPO by changing the constraint to a penalty
term so that we don't want to perform conjugate gradient. Now let's see how PPO works.

We define as a probability ratio between new and old policy. So, we can write our
objective function as:

LCPI denotes the conservative policy iteration. But maximizing L would lead to a large policy
update without constraint. So, we redefine our objective function by adding the penalty
term which penalizes a large policy update. Now the objective function becomes:

We have just added a new term, , to the actual equation. What does
this mean? It actually clips the value of between the interval , that is, if the
value of causes the objective function to increase, heavily clipping the value between an
interval will reduce its effects.

Policy Gradients and Optimization Chapter 11

[241]

We clip the probability ratio either at or based on two cases:

Case 1:

When the advantage is positive, which means that the corresponding action
should be preferred over the average of all other actions. We will increase the
value of for that action, so it will have a greater chance of being selected. As
we are performing a clipping value of , will not exceed greater than :

Case 2:

When the value of the advantage is negative, this means that the action has no
significance and it should not be adopted. So, in this case, we will reduce the
value of for that action so that it will have a lower chance of being selected.
Similarly, as we are performing clipping, a value of will not decrease to less
than :

Policy Gradients and Optimization Chapter 11

[242]

When we are using neural network architectures, we must define the loss function which
includes the value function error for our objective function. We will also add entropy loss to
ensure enough exploration, as we did in A3C. So our final objective function becomes:

c1 and c2 are the coefficients, is the squared error loss between the actual and target

value function, that is, , and S is the entropy bonus.

Summary
We started off with policy gradient methods which directly optimized the policy without
requiring the Q function. We learned about policy gradients by solving a Lunar Lander
game, and we looked at DDPG, which has the benefits of both policy gradients and Q
functions.

Then we looked at policy optimization algorithms such as TRPO, which ensure monotonic
policy improvements by enforcing a constraint on KL divergence between the old and new
policy is not greater than .

We also looked at proximal policy optimization, which changed the constraint to a
penalty by penalizing the large policy update. In the next chapter, Chapter 19, Capstone
Project – Car Racing Using DQN, we will see how to build an agent to win a car racing
game.

Policy Gradients and Optimization Chapter 11

[243]

Questions
The question list is as follows:

What are policy gradients?1.
Why are policy gradients effective?2.
What is the use of the Actor Critic network in DDPG?3.
What is the constraint optimization problem?4.
What is the trust region?5.
How does PPO overcome the drawbacks of TRPO?6.

Further reading
You can further refer to the following papers:

DDPG paper: https://arxiv.org/pdf/1509.02971.pdf

TRPO paper: https://arxiv.org/pdf/1502.05477.pdf
PPO paper: https://arxiv.org/pdf/1707.06347.pdf

https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1707.06347.pdf

12
Balancing CartPole

In this chapter, you will learn about the CartPole balancing problem. The CartPole is an
inverted pendulum, where the pole is balanced against gravity. Traditionally, this problem
is solved by control theory, using analytical equations. However, in this chapter, we will
solve the problem with machine learning.

The following topics will be covered in this chapter:

Installing OpenAI Gym
The different environments of Gym

OpenAI Gym
OpenAI is a non-profit organization dedicated to researching artificial intelligence. Visit
https://openai.com for more information about the mission of OpenAI. The technologies
developed by OpenAI are free for anyone to use.

Gym
Gym provides a toolkit to benchmark AI-based tasks. The interface is easy to use. The goal
is to enable reproducible research. Visit https://gym.openai.com for more information
about Gym. An agent can be taught inside of the gym, and learn activities such as playing
games or walking. An environment is a library of problems.

The standard set of problems presented in the gym are as follows:

CartPole
Pendulum
Space Invaders
Lunar Lander

https://openai.com
https://openai.com
https://openai.com
https://openai.com
https://openai.com
https://openai.com
https://openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com

Balancing CartPole Chapter 12

[245]

Ant
Mountain Car
Acrobot
Car Racing
Bipedal Walker

Any algorithm can work out in the gym by training for these activities. All of the problems
have the same interface. Therefore, any general reinforcement learning algorithm can be
used through the interface.

Installation
The primary interface of the gym is used through Python. Once you have Python3 in an
environment with the pip installer, the gym can be installed as follows:

sudo pip install gym

Advanced users that want to modify the source can compile from the source by using the
following commands:

git clone https://github.com/openai/gym
cd gym
pip install -e .

A new environment can be added to the gym with the source code. There are several
environments that need more dependencies. For macOS, install the dependencies by using
the following command:

brew install cmake boost boost-python sdl2 swig wget

For Ubuntu, use the following commands:

apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev
xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig

Once the dependencies are there, install the complete gym as follows:

pip install 'gym[all]'

This will install most of the environments that are required.

Balancing CartPole Chapter 12

[246]

Running an environment
Any gym environment can be initialized and run by using a simple interface. Let's start by
importing the gym library, as follows:

First we import the gym library:1.

import gym

Next, create an environment by passing an argument to gym.make. In the2.
following code, CartPole is used as an example:

environment = gym.make('CartPole-v0')

Next, reset the environment:3.

environment.reset()

Then, start an iteration and render the environment, as follows:4.

for dummy in range(100):
 environment.render()
 environment.step(environment.action_space.sample())

Also, change the action space at every step, to see CartPole moving. Running the preceding
program should produce a visualization. The scene should start with a visualization, as
follows:

The preceding image is called a CartPole. The CartPole is made up of a cart that can move
horizontally and a pole that can move rotationally, with respect to the center of the cart.

Balancing CartPole Chapter 12

[247]

The pole is pivoted to the cart. After some time, you will notice that the pole is falling to
one side, as shown in the following image:

After a few more iterations, the pole will swing back, as shown in the following image. All
of the movements are constrained by the laws of physics. The steps are taken randomly:

Other environments can be seen in a similar way, by replacing the argument of the gym
environment, such as MsPacman-v0 or MountrainCar-v0. For other environments, other
licenses may be required. Next, we will go through the rest of the environments.

Balancing CartPole Chapter 12

[248]

Atari
To play Atari games, any environment can be invoked. The following code refers to the
game Space Invaders:

environment = gym.make('SpaceInvaders-v0')

Once the preceding command has executed, you will see the following screen:

An Atari game can be played in this environment.

Algorithmic tasks
There are algorithmic tasks that can be learned through reinforcement learning. A copy
environment can be invoked, as follows:

environment = gym.make('Copy-v0')

Balancing CartPole Chapter 12

[249]

The process of copying a string is shown in the following screenshot:

MuJoCo
MuJoCo stands for multi-joint dynamics with contact. It's a simulation environment for
robots and multi-body dynamics:

environment = gym.make('Humanoid-v2')

The following is a visualization for the simulation of a humanoid:

Simulation of a humanoid

There are robots and other objects that can be simulated in this environment.

Balancing CartPole Chapter 12

[250]

Robotics
A robotics environment can also be created, as follows:

environment = gym.make('HandManipulateBlock-v0')

The following is a visualization of a robot hand:

There are several environments in which OpenAI Gym can be used.

Balancing CartPole Chapter 12

[251]

Markov models
The problem is set up as a reinforcement learning problem, with a trial and error method.
The environment is described using state_values state_values (?), and the
state_values are changed by actions. The actions are determined by an algorithm, based
on the current state_value, in order to achieve a particular state_value that is termed a
Markov model. In an ideal case, the past state_values does have an influence on future
state_values, but here, we assume that the current state_value has all of the previous
state_values encoded. There are two types of state_values; one is observable, and the
other is non-observable. The model has to take non-observable state_values into
account, as well. That is called a Hidden Markov model.

CartPole
At each step of the cart and pole, several variables can be observed, such as the position,
velocity, angle, and angular velocity. The possible state_values of the cart are moved
right and left:

state_values: Four dimensions of continuous values.1.
Actions: Two discrete values.2.
The dimensions, or space, can be referred to as the state_value space and the3.
action space. Let's start by importing the required libraries, as follows:

import gym
import numpy as np
import random
import math

Next, make the environment for playing CartPole, as follows:4.

environment = gym.make('CartPole-v0')

Next, define the number of buckets and the number of actions, as follows:5.

no_buckets = (1, 1, 6, 3)
no_actions = environment.action_space.n

Next, define the state_value_bounds, as follows:6.

state_value_bounds = list(zip(environment.observation_space.low,
environment.observation_space.high))
state_value_bounds[1] = [-0.5, 0.5]
state_value_bounds[3] = [-math.radians(50), math.radians(50)]

Balancing CartPole Chapter 12

[252]

Next, define the action_index, as follows:7.

action_index = len(no_buckets)

Next define the q_value_table, as follows:8.

q_value_table = np.zeros(no_buckets + (no_actions,))

Next, define the minimum exploration rate and the minimum learning rate:9.

min_explore_rate = 0.01
min_learning_rate = 0.1

Next, define the maximum episodes, the maximum time steps, the streak to the10.
end, the solving time, the discount, and the number of streaks, as constants:

max_episodes = 1000
max_time_steps = 250
streak_to_end = 120
solved_time = 199
discount = 0.99
no_streaks = 0

Next, define the select action that can decide the action, as follows:11.

def select_action(state_value, explore_rate):
 if random.random() < explore_rate:
 action = environment.action_space.sample()
 else:
 action = np.argmax(q_value_table[state_value])
 return action

Next, select the explore state, as follows:12.

def select_explore_rate(x):
 return max(min_explore_rate, min(1, 1.0 -
math.log10((x+1)/25)))

Next, select the learning rate, as follows:13.

def select_learning_rate(x):
 return max(min_learning_rate, min(0.5, 1.0 -
math.log10((x+1)/25)))

Balancing CartPole Chapter 12

[253]

Next, bucketize the state_value, as follows:14.

def bucketize_state_value(state_value):
 bucket_indexes = []
 for i in range(len(state_value)):
 if state_value[i] <= state_value_bounds[i][0]:
 bucket_index = 0
 elif state_value[i] >= state_value_bounds[i][1]:
 bucket_index = no_buckets[i] - 1
 else:
 bound_width = state_value_bounds[i][1] -
state_value_bounds[i][0]
 offset =
(no_buckets[i]-1)*state_value_bounds[i][0]/bound_width
 scaling = (no_buckets[i]-1)/bound_width
 bucket_index = int(round(scaling*state_value[i] -
offset))
 bucket_indexes.append(bucket_index)
 return tuple(bucket_indexes)

Next, train the episodes, as follows:15.

for episode_no in range(max_episodes):
 explore_rate = select_explore_rate(episode_no)
 learning_rate = select_learning_rate(episode_no)

 observation = environment.reset()

 start_state_value = bucketize_state_value(observation)
 previous_state_value = start_state_value

 for time_step in range(max_time_steps):
 environment.render()
 selected_action = select_action(previous_state_value,
explore_rate)
 observation, reward_gain, completed, _ =
environment.step(selected_action)
 state_value = bucketize_state_value(observation)
 best_q_value = np.amax(q_value_table[state_value])
 q_value_table[previous_state_value + (selected_action,)] +=
learning_rate * (
 reward_gain + discount * (best_q_value) -
q_value_table[previous_state_value + (selected_action,)])

Balancing CartPole Chapter 12

[254]

Next, print all of the relevant metrics for the training process, as follows:16.

 print('Episode number : %d' % episode_no)
 print('Time step : %d' % time_step)
 print('Selection action : %d' % selected_action)
 print('Current state : %s' % str(state_value))
 print('Reward obtained : %f' % reward_gain)
 print('Best Q value : %f' % best_q_value)
 print('Learning rate : %f' % learning_rate)
 print('Explore rate : %f' % explore_rate)
 print('Streak number : %d' % no_streaks)

 if completed:
 print('Episode %d finished after %f time steps' %
(episode_no, time_step))
 if time_step >= solved_time:
 no_streaks += 1
 else:
 no_streaks = 0
 break

 previous_state_value = state_value

 if no_streaks > streak_to_end:
 break

After training for a period of time, the CartPole will be able to balance itself, as17.
shown in the following image:

You have learned a program that will stabilize the CartPole.

Balancing CartPole Chapter 12

[255]

Summary
In this chapter, you learned about the OpenAI Gym, used in reinforcement learning
projects. You saw several examples of the training platform provided out of the box. Then,
we formulated the problem of the CartPole, and made the CartPole balance by using a trial
and error approach.

In the next chapter, you will learn how to play Atari games by using the Gym and a
reinforcement learning approach.

13
Simulating Control Tasks

In the previous chapter, we saw the notable success of deep Q-learning (DQN) in training
an AI agent to play Atari games. One limitation of DQN is that the action space must be
discrete, namely, only a finite number of actions are available for the agent to select and the
total number of actions cannot be too large. However, many practical tasks require
continuous actions, which makes DQN difficult to apply. A naive remedy for DQN in this
case is discretizing the continuous action space. But this remedy doesn't work due to the
curse of dimensionality, meaning that DQN quickly becomes infeasible and does not
generalize well.

This chapter will discuss deep reinforcement learning algorithms for control tasks with a
continuous action space. Several classic control tasks, such as CartPole, Pendulum, and
Acrobot, will be introduced first. You will learn how to simulate these tasks using Gym and
understand the goal and the reward for each task. Then, a basic actor-critic algorithm,
called the deterministic policy gradient (DPG), will be represented. You will learn what
the actor-critic architecture is, and why these kinds of algorithms can address continuous
control tasks. Besides this, you will also learn how to implement DPG via Gym and
TensorFlow. Finally, a more advanced algorithm, called the trust region policy
optimization (TRPO), will be introduced. You will understand why TRPO works much
better than DPG and how to learn a policy by applying the conjugate gradient method.

This chapter requires some background knowledge of mathematical programming and
convex/non-convex optimization. Don't be afraid-we will discuss these algorithms step by
step to make sure that you fully understand the mechanism behind them. Understanding
why they work, when they cannot work, and what their advantages and disadvantages are
is much more important than simply knowing how to implement them with Gym and
TensorFlow. After finishing this chapter, you will understand that the magic show of deep
reinforcement learning is directed by mathematics and deep learning together.

Simulating Control Tasks Chapter 13

[257]

The following topics will be covered in this chapter:

Introduction to classic control tasks
Deterministic policy gradient methods
Trust region policy optimization for complex control tasks

Introduction to control tasks
OpenAI Gym offers classic control tasks from the classic reinforcement learning literature.
These tasks include CartPole, MountainCar, Acrobot, and Pendulum. To find out more,
visit the OpenAI Gym website at: https://gym.openai.com/envs/#classic_control.
Besides this, Gym also provides more complex continuous control tasks running in the
popular physics simulator MuJoCo. Here is the homepage for MuJoCo: http://www.
mujoco.org/. MuJoCo stands for Multi-Joint Dynamics with Contact, which is a physics
engine for research and development in robotics, graphics, and animation. The tasks
provided by Gym are Ant, HalfCheetah, Hopper, Humanoid, InvertedPendulum, Reacher,
Swimmer, and Walker2d. These names are very tricky, aren't they? For more details about
these tasks, please visit the following link: https://gym.openai.com/envs/#mujoco.

Getting started
If you don't have a full installation of OpenAI Gym, you can install the classic_control
and mujoco environment dependencies as follows:

pip install gym[classic_control]
pip install gym[mujoco]

MuJoCo is not open source, so you'll have to follow the instructions in mujoco-
py (available at https://github.com/openai/mujoco-py#obtaining-the-binaries-and-
license-key) to set it up. After the classic control environment is installed, try the
following commands:

import gym
atari = gym.make('Acrobot-v1')
atari.reset()
atari.render()

https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
http://www.mujoco.org/
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
http://www.mujoco.org/
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key
https://github.com/openai/mujoco-py#obtaining-the-binaries-and-license-key

Simulating Control Tasks Chapter 13

[258]

If it runs successfully, a small window will pop up, showing the screen of the Acrobot task:

Besides Acrobot, you can replace the Acrobot-v1 task name with CartPole-v0,
MountainCarContinuous-v0, and Pendulum-v0 to check out the other control tasks. You
can run the following code to simulate these tasks and try to get a high-level understanding
of their physical properties:

import gym
import time

def start(task_name):
 task = gym.make(task_name)
 observation = task.reset()
 while True:
 task.render()
 action = task.env.action_space.sample()
 observation, reward, done, _ = task.step(action)
 print("Action {}, reward {}, observation {}".format(action, reward,
observation))
 if done:
 print("Game finished")
 break
 time.sleep(0.05)
 task.close()

if __name__ == "__main__":
 task_names = ['CartPole-v0', 'MountainCarContinuous-v0',
 'Pendulum-v0', 'Acrobot-v1']
 for task_name in task_names:
 start(task_name)

Simulating Control Tasks Chapter 13

[259]

Gym uses the same interface for all the tasks, including Atari games, classic control tasks,
and MuJoCo control tasks. At each step, an action is randomly drawn from the action space
by calling task.env.action_space.sample() and then this action is submitted to the
simulator via task.step(action), which tells the simulator to execute it.
The step function returns the observation and the reward corresponding to this action.

The classic control tasks
We will now go through the details of each control task and answer the following
questions:

What are the control inputs and the corresponding feedbacks?1.
How is the reward function defined?2.
Is the action space continuous or discrete?3.

Understanding the details of these control tasks is quite important for designing proper
reinforcement learning algorithms because their specifications, such as the dimension of the
action space and the reward function, can affect the performance a lot.

CartPole is quite a famous control task in both the control and reinforcement learning
communities. Gym implements the CartPole system described by Barto, Sutton, and
Anderson in their paper Neuronlike Adaptive Elements That Can Solve Difficult Learning Control
Problem, 1983. In CartPole, a pole is attached by an un-actuated joint to a cart, which moves
along a frictionless track, as illustrated here:

Simulating Control Tasks Chapter 13

[260]

Here are the specifications of CartPole:

Goal The goal is to prevent the pole from falling over.

Action The action space is discrete, namely, the system is controlled by applying a
force of +1 (right direction) and -1 (left direction) to the cart.

Observation
The observation is a vector with four elements, for example, [0.0316304,
-0.1893631, -0.0058115, 0.27025422], which describe the positions of the pole
and the cart.

Reward A reward of +1 is provided for every timestep that the pole remains upright.

Termination The episode ends when the pole is more than 15 degrees from vertical, or the
cart moves more than 2.4 units from the center.

Because this chapter talks about solving continuous control tasks, we will later design a
wrapper for CartPole to convert its discrete action space into a continuous one.

MountainCar was first described by Andrew Moore in his PhD thesis A. Moore, Efficient
Memory-Based Learning for Robot Control, 1990, which is widely applied as the benchmark for
control, Markov decision process (MDP), and reinforcement learning algorithms. In
MountainCar, a small car is on a one-dimensional track, moving between two mountains
and trying to reach the yellow flag, as shown here:

The following table provides its specifications:

Goal
The goal is to reach the top of the right mountain. However, the car's engine
is not strong enough to scale the mountain in a single pass. Therefore, the
only way to succeed is to drive back and forth to build up momentum.

Action The action space is continuous. The input action is the engine force applied to
the car.

Observation The observation is a vector with two elements, for example, [-0.46786288,
-0.00619457], which describe the velocity and the position of the car.

Reward The reward is greater if you spend less energy to reach the goal.

Termination The episode ends when the car reaches the goal flag or the maximum number
of steps is reached.

Simulating Control Tasks Chapter 13

[261]

The Pendulum swing-up problem is a classic problem in the control literature and is used
as a benchmark for testing control algorithms. In Pendulum, a pole is attached to a pivot
point, as shown here:

Here are the specifications of Pendulum:

Goal The goal is to swing the pole up so it stays upright and to prevent it from
falling over.

Action The action space is continuous. The input action is the torque applied to the
pole.

Observation
The observation is a vector with three elements, for example, [-0.19092327,
0.98160496, 3.36590881], which indicate the angle and angular velocity of the
pole.

Reward The reward is computed by a function with the angle, angular velocity, and
the torque as the inputs.

Termination The episode ends when the maximum number of steps is reached.

Acrobot was first described by Sutton in the paper Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding, 1996. The Acrobot system includes two joints
and two links, where the joint between the two links is actuated:

Simulating Control Tasks Chapter 13

[262]

Here are the settings of Acrobot:

Goal The goal is to swing the end of the lower link up to a given height.

Action The action space is discrete, namely, the system is controlled by applying a
torque of 0, +1 and -1 to the links.

Observation
The observation is a vector with six elements, for example, [0.9926474,
0.12104186, 0.99736744, -0.07251337, 0.47965018, -0.31494488], which describe
the positions of the two links.

Reward A reward of +1 is provided for every timestep where the lower link is at the
given height or, otherwise, -1.

Termination The episode ends when the end of the lower link is at the given height, or the
maximum number of steps is reached.

Note that, in Gym, both CartPole and Acrobot have discrete action spaces, which means
these two tasks can be solved by applying the deep Q-learning algorithm. Well, because
this chapter considers continuous control tasks, we need to convert their action spaces into
continuous ones. The following class provides a wrapper for Gym classic control tasks:

class Task:
 def __init__(self, name):
 assert name in ['CartPole-v0', 'MountainCar-v0',
 'Pendulum-v0', 'Acrobot-v1']
 self.name = name
 self.task = gym.make(name)
 self.last_state = self.reset()
 def reset(self):
 state = self.task.reset()

Simulating Control Tasks Chapter 13

[263]

 self.total_reward = 0
 return state
 def play_action(self, action):
 if self.name not in ['Pendulum-v0', 'MountainCarContinuous-v0']:
 action = numpy.fmax(action, 0)
 action = action / numpy.sum(action)
 action = numpy.random.choice(range(len(action)), p=action)
 else:
 low = self.task.env.action_space.low
 high = self.task.env.action_space.high
 action = numpy.fmin(numpy.fmax(action, low), high)
 state, reward, done, _ = self.task.step(action)
 self.total_reward += reward
 termination = 1 if done else 0
 return reward, state, termination
 def get_total_reward(self):
 return self.total_reward
 def get_action_dim(self):
 if self.name not in ['Pendulum-v0', 'MountainCarContinuous-v0']:
 return self.task.env.action_space.n
 else:
 return self.task.env.action_space.shape[0]
 def get_state_dim(self):
 return self.last_state.shape[0]
 def get_activation_fn(self):
 if self.name not in ['Pendulum-v0', 'MountainCarContinuous-v0']:
 return tf.nn.softmax
 else:
 return None

For CartPole and Acrobot, the input action should be a probability vector indicating the
probability of selecting each action. In the play_action function, an action is randomly
sampled based on this probability vector and submitted to the system.
The get_total_reward function returns the total reward in one episode.
The get_action_dim and get_state_dim functions return the dimension of the action
space and the observation, respectively. The get_activation_fn function is used for the
output layer in the actor network, which we will discuss later.

Simulating Control Tasks Chapter 13

[264]

Deterministic policy gradient
As discussed in the previous chapter, DQN uses the Q-network to estimate the state-
action value function, which has a separate output for each available action. Therefore,
the Q-network cannot be applied, due to the continuous action space. A careful reader may
remember that there is another architecture of the Q-network that takes both the state and
the action as its inputs, and outputs the estimate of the corresponding Q-value. This
architecture doesn't require the number of available actions to be finite, and has the
capability to deal with continuous input actions:

If we use this kind of network to estimate the state-action value function, there must
be another network that defines the behavior policy of the agent, namely outputting a
proper action given the observed state. In fact, this is the intuition behind actor-critic
reinforcement learning algorithms. The actor-critic architecture contains two parts:

Actor: The actor defines the behavior policy of the agent. In control tasks, it1.
outputs the control signal given the current state of the system.
Critic: The critic estimates the Q-value of the current policy. It can judge whether2.
the policy is good or not.

Therefore, if both the actor and the critic can be trained with the feedbacks (state, reward,
next state, termination signal) received from the system, as in training the Q-network in
DQN, then the classic control tasks will be solved. But how do we train them?

Simulating Control Tasks Chapter 13

[265]

The theory behind policy gradient
One solution is the deep deterministic policy gradient (DDPG) algorithm, which combines
the actor-critic approach with insights from the success of DQN. This is discussed in the
following papers:

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D.
Wierstra. Continuous control with deep reinforcement learning. In ICLR, 2016.

The reason why DDPG is introduced first is that it is quite similar to DQN, so you can
understand the mechanism behind it much more easily after finishing the previous chapter.
Recall that DQN is able to train the Q-network in a stable and robust way for the following
reasons:

The Q-network is trained with the samples randomly drawn from the replay
memory to minimize the correlations between samples.
 A target network is used to estimate the target Q-value, reducing the probability
that oscillation or divergence of the policy occurs. DDPG applies the same
strategy, which means that DDPG is also a model-free and off-policy method.

We use the same notations as in the previous chapter for the reinforcement learning setting.
At each timestep , the agent observes state , takes action ,and then receives the
corresponding reward generated from a function . Instead of using to
represent the set of all the available actions at state , here, we use to denote the
policy of the agent, which maps states to a probability distribution over the actions. Many
approaches in reinforcement learning, such as DQN, use the Bellman equation as the
backbone:

.

The only difference between this formulation and the one in DQN is that the policy here
is stochastic, so that the expectation of is taken over . If the target policy is
deterministic, which can be described as a function , then this inner expectation can be
avoided:

.

Simulating Control Tasks Chapter 13

[266]

The expectation depends only on the environment. This means that it is possible to learn
the state-action value function off-policy, using transitions that are generated from
other policies, as we did in DQN. The function , the critic, can be approximated by a
neural network parameterized by and the policy , the actor, can also be represented by
another neural network parameterized by (in DQN, is just). Then, the
critic can be be trained by minimizing the following loss function:

,

Here, . As in DQN, can be estimated via the target
network and the samples for approximating can be randomly drawn from the replay
memory.

To train the actor , we fix the critic , learned by minimizing the loss function , and try to
maximize over , since a larger Q-value means a better policy. This can be
done by following the applying the chain rule to the expected return with respect to the
actor parameters:

.

The following diagram shows the high-level architecture of DDPG:

Simulating Control Tasks Chapter 13

[267]

Compared to DQN, there is a small difference in updating the target network. Instead of
directly copying the weights of to the target network after several iterations, a soft update
is used:

Here, represents the weights of the target network. This update means that the target
values are constrained to change slowly, greatly improving the stability of learning. This
simple change moves the relatively unstable problem of learning the value function closer
to the case of supervised learning.

Similar to DQN, DDPG also needs to balance exploration and exploitation during the
training. Since the action generated by the policy is continuous, the -greedy method
cannot be applied. Instead, we can construct an exploration policy by adding noise
sampled from a distribution to the actor policy :

 where

 can be chosen as , where is the standard Gaussian distribution and decreases
during each training step. Another choice is to apply an Ornstein-Uhlenbeck process to
generate the exploration noise .

DPG algorithm
The following pseudo code shows the DDPG algorithm:

Initialize replay memory to capacity ;

Initialize the critic network and actor network with random
weights and ;

Initialize the target networks and with weights and
;
Repeat for each episode:
 Set time step ;
 Initialize a random process for action exploration noise;
 Receive an initial observation state ;
 While the terminal state hasn't been reached:

 Select an action according to the current policy and
exploration noise;
 Execute action in the simulator and observe reward and the next
state ;

 Store transition into replay memory ;

 Randomly sample a batch of transitions from ;

Simulating Control Tasks Chapter 13

[268]

 Set if is a terminal state or

if is a non-terminal state;
 Update critic by minimizing the loss:

 ;
 Update the actor policy using the sampled policy gradient:

 ;
 Update the target networks:

 ,

 ;
 End while

There is a natural extension of DDPG by replacing the feedforward neural networks used
for approximating the actor and the critic with recurrent neural networks. This extension is
called the recurrent deterministic policy gradient algorithm (RDPG) and is discussed in
the f paper N. Heess, J. J. Hunt, T. P. Lillicrap and D. Silver. Memory-based control with
recurrent neural networks. 2015.

The recurrent critic and actor are trained using backpropagation through time (BPTT). For
readers who are interested in it, the paper can be downloaded from https://arxiv.org/
abs/1512.04455.

Implementation of DDPG
This section will show you how to implement the actor-critic architecture using
TensorFlow. The code structure is almost the same as the DQN implementation that was
shown in the previous chapter.

The ActorNetwork is a simple MLP that takes the observation state as its input:

class ActorNetwork:
 def __init__(self, input_state, output_dim, hidden_layers,
activation=tf.nn.relu):
 self.x = input_state
 self.output_dim = output_dim
 self.hidden_layers = hidden_layers
 self.activation = activation
 with tf.variable_scope('actor_network'):
 self.output = self._build()
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
 tf.get_variable_scope().name)
 def _build(self):
 layer = self.x

https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455

Simulating Control Tasks Chapter 13

[269]

 init_b = tf.constant_initializer(0.01)
 for i, num_unit in enumerate(self.hidden_layers):
 layer = dense(layer, num_unit, init_b=init_b,
name='hidden_layer_{}'.format(i))
 output = dense(layer, self.output_dim, activation=self.activation,
init_b=init_b, name='output')
 return output

The constructor requires four arguments: input_state, output_dim, hidden_layers,
and activation. input_state is a tensor for the observation state. output_dim is the
dimension of the action space. hidden_layers specifies the number of the hidden layers
and the number of units for each layer. activation indicates the activation function for
the output layer.

The CriticNetwork is also a MLP, which is enough for the classic control tasks:

class CriticNetwork:
 def __init__(self, input_state, input_action, hidden_layers):
 assert len(hidden_layers) >= 2
 self.input_state = input_state
 self.input_action = input_action
 self.hidden_layers = hidden_layers
 with tf.variable_scope('critic_network'):
 self.output = self._build()
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
 tf.get_variable_scope().name)
 def _build(self):
 layer = self.input_state
 init_b = tf.constant_initializer(0.01)
 for i, num_unit in enumerate(self.hidden_layers):
 if i != 1:
 layer = dense(layer, num_unit, init_b=init_b,
name='hidden_layer_{}'.format(i))
 else:
 layer = tf.concat([layer, self.input_action], axis=1,
name='concat_action')
 layer = dense(layer, num_unit, init_b=init_b,
name='hidden_layer_{}'.format(i))
 output = dense(layer, 1, activation=None, init_b=init_b,
name='output')
 return tf.reshape(output, shape=(-1,))

Simulating Control Tasks Chapter 13

[270]

The network takes the state and the action as its inputs. It first maps the state into a hidden
feature representation and then concatenates this representation with the action, followed
by several hidden layers. The output layer generates the Q-value that corresponds to the
inputs.

The actor-critic network combines the actor network and the critic network together:

class ActorCriticNet:
 def __init__(self, input_dim, action_dim,
 critic_layers, actor_layers, actor_activation,
 scope='ac_network'):
 self.input_dim = input_dim
 self.action_dim = action_dim
 self.scope = scope
 self.x = tf.placeholder(shape=(None, input_dim), dtype=tf.float32,
name='x')
 self.y = tf.placeholder(shape=(None,), dtype=tf.float32, name='y')
 with tf.variable_scope(scope):
 self.actor_network = ActorNetwork(self.x, action_dim,
 hidden_layers=actor_layers,
 activation=actor_activation)
 self.critic_network = CriticNetwork(self.x,
self.actor_network.get_output_layer(),
hidden_layers=critic_layers)
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
 tf.get_variable_scope().name)
 self._build()
 def _build(self):
 value = self.critic_network.get_output_layer()
 actor_loss = -tf.reduce_mean(value)
 self.actor_vars = self.actor_network.get_params()
 self.actor_grad = tf.gradients(actor_loss, self.actor_vars)
 tf.summary.scalar("actor_loss", actor_loss, collections=['actor'])
 self.actor_summary = tf.summary.merge_all('actor')
 critic_loss = 0.5 * tf.reduce_mean(tf.square((value - self.y)))
 self.critic_vars = self.critic_network.get_params()
 self.critic_grad = tf.gradients(critic_loss, self.critic_vars)
 tf.summary.scalar("critic_loss", critic_loss,
collections=['critic'])
 self.critic_summary = tf.summary.merge_all('critic')

The constructor requires six arguments, as follows: input_dim and action_dim are the
dimensions of the state space and the action space, respectively. critic_layers and
actor_layers specify the hidden layers of the critic network and the actor network.
actor_activation indicates the activation function for the output layer of the actor
network. scope is the scope name used for the scope TensorFlow variable.

Simulating Control Tasks Chapter 13

[271]

The constructor first creates an instance of the self.actor_network actor network with
an input of self.x, where self.x represents the current state. It then creates an instance
of the critic network using the following as the
inputs: self.actor_network.get_output_layer() as the output of the actor
network and self.x as the current state. Given these two networks, the constructor calls
self._build() to build the loss functions for the actor and critic that we discussed
previously. The actor loss is -tf.reduce_mean(value), where value is the Q-value
computed by the critic network. The critic loss is 0.5 *
tf.reduce_mean(tf.square((value - self.y))), where self.y is a tensor for the
predicted target value computed by the target network.

The class ActorCriticNet provides the functions for calculating the action and the Q-
value given the current state, that is, get_action and get_value. It also provides
get_action_value, which computes the state-action value function given the
current state and the action taken by the agent:

class ActorCriticNet:
 def get_action(self, sess, state):
 return self.actor_network.get_action(sess, state)
 def get_value(self, sess, state):
 return self.critic_network.get_value(sess, state)
 def get_action_value(self, sess, state, action):
 return self.critic_network.get_action_value(sess, state, action)
 def get_actor_feed_dict(self, state):
 return {self.x: state}
 def get_critic_feed_dict(self, state, action, target):
 return {self.x: state, self.y: target,
 self.critic_network.input_action: action}
 def get_clone_op(self, network, tau=0.9):
 update_ops = []
 new_vars = {v.name.replace(network.scope, ''): v for v in
network.vars}
 for v in self.vars:
 u = (1 - tau) * v + tau * new_vars[v.name.replace(self.scope,
'')]
 update_ops.append(tf.assign(v, u))
 return update_ops

Simulating Control Tasks Chapter 13

[272]

Because DPG has almost the same architecture as DQN, the implementations of the replay
memory and the optimizer are not shown in this chapter. For more details, you can refer to
the previous chapter or visit our GitHub repository (https://github.com/
PacktPublishing/Python-Reinforcement-Learning-Projects). By combining these
modules together, we can implement the DPG class for the deterministic policy gradient
algorithm:

class DPG:
 def __init__(self, config, task, directory, callback=None,
summary_writer=None):
 self.task = task
 self.directory = directory
 self.callback = callback
 self.summary_writer = summary_writer
 self.config = config
 self.batch_size = config['batch_size']
 self.n_episode = config['num_episode']
 self.capacity = config['capacity']
 self.history_len = config['history_len']
 self.epsilon_decay = config['epsilon_decay']
 self.epsilon_min = config['epsilon_min']
 self.time_between_two_copies = config['time_between_two_copies']
 self.update_interval = config['update_interval']
 self.tau = config['tau']
 self.action_dim = task.get_action_dim()
 self.state_dim = task.get_state_dim() * self.history_len
 self.critic_layers = [50, 50]
 self.actor_layers = [50, 50]
 self.actor_activation = task.get_activation_fn()
 self._init_modules()

Here, config includes all the parameters of DPG, for example, batch size and learning rate
for training. The task is an instance of a certain classic control task. In the constructor, the
replay memory, Q-network, target network, and optimizer are initialized by calling
the _init_modules function:

 def _init_modules(self):
 # Replay memory
 self.replay_memory = ReplayMemory(history_len=self.history_len,
 capacity=self.capacity)
 # Actor critic network
 self.ac_network = ActorCriticNet(input_dim=self.state_dim,
 action_dim=self.action_dim,
 critic_layers=self.critic_layers,
 actor_layers=self.actor_layers,
actor_activation=self.actor_activation,
 scope='ac_network')

https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects

Simulating Control Tasks Chapter 13

[273]

 # Target network
 self.target_network = ActorCriticNet(input_dim=self.state_dim,
 action_dim=self.action_dim,
critic_layers=self.critic_layers,
actor_layers=self.actor_layers,
actor_activation=self.actor_activation,
 scope='target_network')
 # Optimizer
 self.optimizer = Optimizer(config=self.config,
 ac_network=self.ac_network,
 target_network=self.target_network,
 replay_memory=self.replay_memory)
 # Ops for updating target network
 self.clone_op = self.target_network.get_clone_op(self.ac_network,
tau=self.tau)
 # For tensorboard
 self.t_score = tf.placeholder(dtype=tf.float32, shape=[],
name='new_score')
 tf.summary.scalar("score", self.t_score, collections=['dpg'])
 self.summary_op = tf.summary.merge_all('dpg')
 def choose_action(self, sess, state, epsilon=0.1):
 x = numpy.asarray(numpy.expand_dims(state, axis=0),
dtype=numpy.float32)
 action = self.ac_network.get_action(sess, x)[0]
 return action + epsilon * numpy.random.randn(len(action))
 def play(self, action):
 r, new_state, termination = self.task.play_action(action)
 return r, new_state, termination

 def update_target_network(self, sess):
 sess.run(self.clone_op)

The choose_action function selects an action based on the current estimate of the actor-
critic network and the observed state.

Note that a Gaussian noise controlled by epsilon is added for
exploration.

The play function submits an action into the simulator and returns the feedback from the
simulator. The update_target_network function updates the target network from the
current actor-critic network.

Simulating Control Tasks Chapter 13

[274]

To begin the training process, the following function can be called:

 def train(self, sess, saver=None):
 num_of_trials = -1
 for episode in range(self.n_episode):
 frame = self.task.reset()
 for _ in range(self.history_len+1):
 self.replay_memory.add(frame, 0, 0, 0)
 for _ in range(self.config['T']):
 num_of_trials += 1
 epsilon = self.epsilon_min + \
 max(self.epsilon_decay - num_of_trials, 0) / \
 self.epsilon_decay * (1 - self.epsilon_min)
 if num_of_trials % self.update_interval == 0:
 self.optimizer.train_one_step(sess, num_of_trials,
self.batch_size)
 state = self.replay_memory.phi(frame)
 action = self.choose_action(sess, state, epsilon)
 r, new_frame, termination = self.play(action)
 self.replay_memory.add(frame, action, r, termination)
 frame = new_frame
 if num_of_trials % self.time_between_two_copies == 0:
 self.update_target_network(sess)
 self.save(sess, saver)
 if self.callback:
 self.callback()
 if termination:
 score = self.task.get_total_reward()
 summary_str = sess.run(self.summary_op,
feed_dict={self.t_score: score})
 self.summary_writer.add_summary(summary_str,
num_of_trials)
 self.summary_writer.flush()
 break

In each episode, it calls replay_memory.phi to get the current state and calls
the choose_action function to select an action based on the current state. This action is
submitted into the simulator by calling the play function, which returns the corresponding
reward, next state, and termination signal. Then, the (current state, action,
reward, termination) transition is stored into the replay memory. For every
update_interval step (update_interval = 1 ,by default), the actor-critic network is
trained with a batch of transitions that are randomly sampled from the replay memory. For
every time_between_two_copies step, the target network is updated and the weights of
the Q-network are saved to the hard disk.

Simulating Control Tasks Chapter 13

[275]

After the training step, the following function can be called for evaluating the performance
of our trained agent:

 def evaluate(self, sess):
 for episode in range(self.n_episode):
 frame = self.task.reset()
 for _ in range(self.history_len+1):
 self.replay_memory.add(frame, 0, 0, 0)
 for _ in range(self.config['T']):
 print("episode {}, total reward {}".format(episode,
self.task.get_total_reward()))
 state = self.replay_memory.phi(frame)
 action = self.choose_action(sess, state, self.epsilon_min)
 r, new_frame, termination = self.play(action)
 self.replay_memory.add(frame, action, r, termination)
 frame = new_frame

 if self.callback:
 self.callback()
 if termination:
 break

Experiments
The full implementation of DPG can be downloaded from our GitHub (https://github.
com/PacktPublishing/Python-Reinforcement-Learning-Projects). To train an agent for
CartPole, run the following command under the src folder:

python train.py -t CartPole-v0 -d cpu

There are two arguments in train.py. One is -t, or --task, indicating the name of the
classic control task you want to test. The other one is -d, or --device, which specifies the
device (CPU or GPU) that you want to use to train the actor-critic network. Since the
dimensions of the state spaces of these classic control tasks are relatively low compared to
the Atari environment, using the CPU to train the agent is fast enough. It should only take
several minutes to finish.

During the training, you can open a new Terminal and type the following command to
visualize both the architecture of the actor-critic network and the training procedure:

tensorboard --logdir=log/CartPole-v0/train

https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects

Simulating Control Tasks Chapter 13

[276]

Here, logdir points to the folder where the CartPole-v0 log file is stored. Once
TensorBoard is running, navigate your web browser to localhost:6006 to view the
TensorBoard:

Tensorboard view

The top two graphs show the changes of the actor loss and the critic loss against the
training step. For classical control tasks, the actor loss usually decreases consistently, while
the critic loss has a large fluctuation. After 60,000 training steps, the score becomes stable,
achieving 200, the highest score that can be reached in the CartPole simulator.

Simulating Control Tasks Chapter 13

[277]

Using a similar command, you can also train an agent for the Pendulum task:

python train.py -t Pendulum-v0 -d cpu

Then, check the training procedure via Tensorboard:

tensorboard --logdir=log/Pendulum-v0/train

The following screenshot shows the changes of the score during training:

Changes in score during training

Simulating Control Tasks Chapter 13

[278]

A careful reader may notice that the score of Pendulum fluctuates widely compared to the
score of CartPole. There are two reasons that are causing this problem:

In Pendulum, the starting position of the pole is not deterministic, namely, it may
be different for two episodes
The train procedure in DPG may not be always stable, especially for complicated
tasks, such as MuJoCo control tasks

The MuJoCo control tasks, for example, Ant, HalfCheetah, Hopper, Humanoid,
InvertedPendulum, Reacher, Swimmer, and Walker2d provided by Gym, have high-
dimensional state and action space, which makes DPG fail. If you are curious about what
happens when running DPG with the Hopper-v0 task, you can try the following:

python train.py -t Hopper-v0 -d cpu

After several minutes, you will see that DPG cannot teach Hopper how to walk. The main
reason why DPG fails in this case is that the simple actor and critic updates discussed here
become unstable with high-dimensional inputs.

Trust region policy optimization
The trust region policy optimization (TRPO) algorithm was proposed to solve complex
continuous control tasks in the following paper: Schulman, S. Levine, P. Moritz, M. Jordan
and P. Abbeel. Trust Region Policy Optimization. In ICML, 2015.

To understand why TRPO works requires some mathematical background. The main idea
is that it is better to guarantee that the new policy, , optimized by one training step, not
only monotonically decreases the optimization loss function (and thus improves the
policy), but also does not deviate from the previous policy much, which means that
there should be a constraint on the difference between and , for example,

 for a certain constraint function constant .

Simulating Control Tasks Chapter 13

[279]

Theory behind TRPO
Let's see the mechanism behind TRPO. If you feel that this part is hard to understand, you
can skip it and go directly to how to run TRPO to solve MuJoCo control tasks. Consider an
infinite-horizon discounted Markov decision process denoted by , where is a
finite set of states, is a finite set of actions, is the transition probability distribution, is
the cost function, is the distribution of the initial state, and is the discount factor. Let
be a stochastic policy that we want to learn by minimizing the following expected
discounted cost:

Here, this is , and . The definitions of the state-action
value function , the value function ,and the advantage function under policy are
as follows:

Here, this is and .

Our goal is to improve policy (by reducing the expected discounted cost) during each
training step. In order to design an algorithm monotonically improving , let's consider the
following equation:

Simulating Control Tasks Chapter 13

[280]

Here, this is , and . This equation holds for any policy . For
the readers who are interested in the proof of this equation, refer to the appendix in the
TRPO paper or the paper Approximately optimal approximate reinforcement learning, written by
Kakade and Langford. To simplify this equation, let be the discounted visitation
frequencies:

By rearranging the preceding equation to sum over states instead of timesteps, it becomes
the following:

From this equation, we can see that any policy update that has a non-positive
expected advantage at every state , that is, , is guaranteed to reduce the cost

. Therefore, for discrete action space such as the Atari environment, the deterministic
policy , selected in DQN, guarantees to improves the policy if there is
at least one state-action pair with a negative advantage value and nonzero state visitation
probability. However, in practical problems, especially when the policy is approximated by
a neural network, there will be some state for which the expected advantage is positive, due
to approximation errors. Besides this, the dependency of on makes this equation
hard to optimize, so TRPO considers optimizing the following function by replacing
with :

Kakade and Langford showed that if we have a parameterized policy, , which is a
differentiable function of the parameter , then for any parameter :

This means that improving will also improve with a sufficient small update on . Based
on this idea, Kakade and Langford proposed a policy updating scheme called the
conservative policy iteration:

Simulating Control Tasks Chapter 13

[281]

Here, is the current policy, is the new policy, and is obtained by solving
. They proved the following bound for this update:

 where

Note that this bound only applies to mixture policies generated by the preceding update. In
TRPO, the authors extended this bound to general stochastic policies, rather than just
mixture policies. The main idea is to replace mixture weight with a distance measure
between and . An interesting pick of the distance measure is the total variation
divergence. Taking two discrete distributions and as an example, the total variation
divergence is defined as follows:

For policies and , let be the maximum total variation divergence
over all the states:

With and , it can be shown that:

, where .

Actually, the total variation divergence can be upper bounded by the KL divergence,

namely, , which means that:

, where .

Simulating Control Tasks Chapter 13

[282]

TRPO algorithm
Based on the preceding policy improvement bound, the following algorithm is developed:

Initialize policy ;

Repeat for each step :

 Compute all advantage values ;
 Solve the following optimization problem:

 ;
Until convergence

In each step, this algorithm minimizes the upper bound of , so that:

The last equation follows from that for any policy . This implies that this
algorithm is guaranteed to generate a sequence of monotonically improving policies.

In practice, since the exact value of in is hard to calculate, and it is difficult to control
the step size of each update using the penalty term, TRPO replaces the penalty term with
the constraint that KL divergence is bounded by a constant :

But this problem is still impractical to solve due to the large number of constraints.
Therefore, TRPO uses a heuristic approximation that considers the average KL divergence:

Simulating Control Tasks Chapter 13

[283]

This leads to the following optimization problem:

In other words, by expanding , we need to solve the following:

Now, the question is: how do we optimize this problem? A straightforward idea is to
sample several trajectories by simulating the policy for some number of steps and then
approximate the objective function of this problem using these trajectories. Since the
advantage function , we replace with by the Q-value
in the objective function, which only changes the objective by a constant. Besides, note the
following:

Therefore, given a trajectory generated under policy , we will
optimize as follows:

For the MuJoCo control tasks, both the policy and the state-action value function

 are approximated by neural networks. In order to optimize this problem, the KL
divergence constraint can be approximated by the Fisher information matrix. This problem
can then be solved via the conjugate gradient algorithm. For more details, you can
download the source code of TRPO from GitHub and check optimizer.py, which
implements the conjugate gradient algorithm using TensorFlow.

Simulating Control Tasks Chapter 13

[284]

Experiments on MuJoCo tasks
The Swimmer task is a good example to test TRPO. This task involves a 3-link swimming
robot in a viscous fluid, where the goal is to make it swim forward as fast as possible by
actuating the two joints (http://gym.openai.com/envs/Swimmer-v2/). The following
screenshot shows how Swimmer looks in the MuJoCo simulator:

To train an agent for Swimmer, run the following command under the src folder:

CUDA_VISIBLE_DEVICES= python train.py -t Swimmer

There are two arguments in train.py. One is -t, or --task, indicating the name of the
MuJoCo or classic control task you want to test. Since the state spaces of these control tasks
have relatively low dimensions compared to the Atari environment, it is enough to use
CPU alone to train the agent by setting CUDA_VISIBLE_DEVICES to empty, which will take
between 30 minutes and two hours.

During the training, you can open a new Terminal and type the following command to
visualize the training procedure:

tensorboard --logdir=log/Swimmer

http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/
http://gym.openai.com/envs/Swimmer-v2/

Simulating Control Tasks Chapter 13

[285]

Here, logdir points to the folder where the Swimmer log file is stored. Once TensorBoard
is running, navigate your web browser to localhost:6006 to view the TensorBoard:

Clearly, after 200 episodes, the total reward achieved in each episode becomes stable,
namely, around 366. To check how Swimmer moves after the training, run the following
command:

CUDA_VISIBLE_DEVICES= python test.py -t Swimmer

You will see a funny-looking Swimmer object walking on the floor.

Summary
This chapter introduced the classical control tasks and the MuJoCo control tasks provided
by Gym. You have learned the goals and specifications of these tasks and how to
implement a simulator for them. The most important parts of this chapter were the
deterministic DPG and the TRPO for continuous control tasks. You learned the theory
behind them, which explains why they work well in these tasks. You also learned how to
implement DPG and TRPO using TensorFlow, and how to visualize the training procedure.

In the next chapter, we will learn about how to apply reinforcement learning algorithms to
more complex tasks, for example, playing Minecraft. We will introduce the Asynchronous
Actor-Critic (A3C) algorithm, which is much faster than DQN at complex tasks, and has
been widely applied as a framework in many deep reinforcement learning algorithms.

14
Building Virtual Worlds in

Minecraft
In the two previous chapters, we discussed the deep Q-learning (DQN) algorithm for
playing Atari games and the Trust Region Policy Optimization (TRPO) algorithm for
continuous control tasks. We saw the big success of these algorithms in solving complex
problems when compared to traditional reinforcement learning algorithms without the use
of deep neural networks to approximate the value function or the policy function. Their
main disadvantage, especially for DQN, is that the training step converges too slowly, for
example, training an agent to play Atari games takes about one week. For more complex
games, even one week's training is insufficient.

This chapter will introduce a more complicated example, Minecraft, which is a popular
online video game created by Swedish game developer Markus Persson and later
developed by Mojang. You will learn how to launch a Minecraft environment using
OpenAI Gym and play different missions. In order to build an AI player to accomplish
these missions, you will learn the asynchronous advantage actor-critic (A3C) algorithm,
which is a lightweight framework for deep reinforcement learning that uses asynchronous
gradient descent for optimization of deep neural network controllers. A3C is a widely
applied deep reinforcement learning algorithm for different kinds of tasks, training for half
the time on a single multi-core CPU instead of a GPU. For Atari games such as Breakout,
A3C achieves human-level performance after 3 hours' training, which is much faster than
DQN, which requires 3 days' training. You will learn how to implement A3C using Python
and TensorFlow. This chapter does not require as much of a mathematical background as
the previous chapter—just have fun!

The following topics will be covered in this chapter:

Introduction to the Minecraft environment
Data preparation for training an AI bot in the Minecraft environment
The asynchronous advantage actor-critic framework
Implementation of the A3C framework

Building Virtual Worlds in Minecraft Chapter 14

[287]

Introduction to the Minecraft environment
The original OpenAI Gym does not contain the Minecraft environment. We need to install a
Minecraft environment bundle, available at https://github.com/tambetm/gym-minecraft.
This bundle is built based on Microsoft's Malmö, which is a platform for AI
experimentation and research built on top of Minecraft.

Before installing the gym-minecraft package, Malmö should first be downloaded from
https://github.com/Microsoft/malmo. We can download the latest pre-built version from
https://github.com/Microsoft/malmo/releases. After unzipping the package, go to the
Minecraft folder and run launchClient.bat on Windows, or launchClient.sh on
Linux/MacOS, to launch a Minecraft environment. If it is successfully launched, we can
now install gym-minecraft via the following scripts:

python3 -m pip install gym
python3 -m pip install pygame

git clone https://github.com/tambetm/minecraft-py.git
cd minecraft-py
python setup.py install

git clone https://github.com/tambetm/gym-minecraft.git
cd gym-minecraft
python setup.py install

Then, we can run the following code to test whether gym-minecraft has been successfully
installed or not:

import logging
import minecraft_py
logging.basicConfig(level=logging.DEBUG)

proc, _ = minecraft_py.start()
minecraft_py.stop(proc)

The gym-minecraft package provides 15 different missions, including
MinecraftDefaultWorld1-v0 and MinecraftBasic-v0. For example, in
MinecraftBasic-v0, the agent can move around in a small chamber with a box placed in
the corner, and the goal is to reach the position of this box. The following screenshots show
several missions available in gym-minecraft:

https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases
https://github.com/Microsoft/malmo/releases

Building Virtual Worlds in Minecraft Chapter 14

[288]

The gym-minecraft package has the same interface as other Gym environments, such as
Atari and classic control tasks. You can run the following code to test different Minecraft
missions and try to get a high-level understanding of their properties, for example, goal,
reward, and observation:

import gym
import gym_minecraft
import minecraft_py

def start_game():
 env = gym.make('MinecraftBasic-v0')
 env.init(start_minecraft=True)
 env.reset()
 done = False
 while not done:
 env.render(mode='human')
 action = env.action_space.sample()
 obs, reward, done, info = env.step(action)
 env.close()

if __name__ == "__main__":
 start_game()

At each step, an action is randomly drawn from the action space by calling
env.action_space.sample(), and then this action is submitted to the system by calling
the env.step(action) function, which returns the observation and the reward
corresponding to this action. You can also try other missions by replacing
MinecraftBasic-v0 with other names, for example, MinecraftMaze1-v0 and
MinecraftObstacles-v0.

Building Virtual Worlds in Minecraft Chapter 14

[289]

Data preparation
In the Atari environment, recall that there are three modes for each Atari game, for
example, Breakout, BreakoutDeterministic, and BreakoutNoFrameskip, and each mode has
two versions, for example, Breakout-v0 and Breakout-v4. The main difference between the
three modes is the frameskip parameter that indicates the number of frames (steps) the one
action is repeated on. This is called the frame-skipping technique, which allows us to play
more games without significantly increasing the runtime.

However, in the Minecraft environment, there is only one mode where the frameskip
parameter is equal to one. Therefore, in order to apply the frame-skipping technique, we
need to explicitly repeat a certain action frameskip multiple times during one timestep.
Besides this, the frame images returned by the step function are RGB images. Similar to
the Atari environment, the observed frame images are converted to grayscale and then
resized to 84x84. The following code provides the wrapper for gym-minecraft, which
contains all the data preprocessing steps:

import gym
import gym_minecraft
import minecraft_py
import numpy, time
from utils import cv2_resize_image

class Game:

 def __init__(self, name='MinecraftBasic-v0', discrete_movement=False):
 self.env = gym.make(name)
 if discrete_movement:
 self.env.init(start_minecraft=True,
allowDiscreteMovement=["move", "turn"])
 else:
 self.env.init(start_minecraft=True,
allowContinuousMovement=["move", "turn"])
 self.actions = list(range(self.env.action_space.n))
 frame = self.env.reset()
 self.frame_skip = 4
 self.total_reward = 0
 self.crop_size = 84
 self.buffer_size = 8
 self.buffer_index = 0
 self.buffer = [self.crop(self.rgb_to_gray(frame)) for _ in
range(self.buffer_size)]
 self.last_frame = frame
 def rgb_to_gray(self, im):
 return numpy.dot(im, [0.2126, 0.7152, 0.0722])
 def reset(self):

Building Virtual Worlds in Minecraft Chapter 14

[290]

 frame = self.env.reset()
 self.total_reward = 0
 self.buffer_index = 0
 self.buffer = [self.crop(self.rgb_to_gray(frame)) for _ in
range(self.buffer_size)]
 self.last_frame = frame
 def add_frame_to_buffer(self, frame):
 self.buffer_index = self.buffer_index % self.buffer_size
 self.buffer[self.buffer_index] = frame
 self.buffer_index += 1
 def get_available_actions(self):
 return list(range(len(self.actions)))
 def get_feedback_size(self):
 return (self.crop_size, self.crop_size)
 def crop(self, frame):
 feedback = cv2_resize_image(frame,
 resized_shape=(self.crop_size,
self.crop_size),
 method='scale', crop_offset=0)
 return feedback
 def get_current_feedback(self, num_frames=4):
 assert num_frames < self.buffer_size, "Frame buffer is not large
enough."
 index = self.buffer_index - 1
 frames = [numpy.expand_dims(self.buffer[index - k], axis=0) for k
in range(num_frames)]
 if num_frames > 1:
 return numpy.concatenate(frames, axis=0)
 else:
 return frames[0]
 def play_action(self, action, num_frames=4):
 reward = 0
 termination = 0
 for i in range(self.frame_skip):
 a = self.actions[action]
 frame, r, done, _ = self.env.step(a)
 reward += r
 if i == self.frame_skip - 2:
 self.last_frame = frame
 if done:
 termination = 1
self.add_frame_to_buffer(self.crop(numpy.maximum(self.rgb_to_gray(frame),
self.rgb_to_gray(self.last_frame))))
 r = numpy.clip(reward, -1, 1)
 self.total_reward += reward
 return r, self.get_current_feedback(num_frames), termination

Building Virtual Worlds in Minecraft Chapter 14

[291]

In the constructor, the available actions for Minecraft are restricted to move and turn (not
considering other actions, such as the camera controls). Converting an RGB image into a
grayscale image is quite easy. Given an RGB image with shape (height, width, channel), the
rgb_to_gray function is used to convert an image to grayscale. For cropping and
reshaping frame images, we use the opencv-python or cv2 packages, which contain a
Python wrapper around the original C++ OpenCV implementation, that is, the
crop function reshapes an image into an 84x84 matrix. Unlike the Atari environment,
where crop_offset is set to 8 to remove the scoreboard from the screen, here, we set
crop_offset to 0 and just reshape the frame images.

The play_action function submits the input action to the Minecraft environment and
returns the corresponding reward, observation, and termination signal. The default
frameskip parameter is set to 4, meaning that one action is repeated four times for each
play_action call. The get_current_feedback function returns the observation that
stacks the last four frame images together, since only considering the current frame image
is not enough for playing Minecraft because it doesn't contain dynamic information about
the game status.

This wrapper has the same interface as the wrappers for the Atari environment and classic
control tasks. Therefore, you can try to run DQN or TRPO with the Minecraft environment
without changing anything. If you have one idle GPU, it is better to run DQN first before
trying the A3C algorithm that we will discuss next.

Asynchronous advantage actor-critic
algorithm
In the previous chapters, we discussed the DQN for playing Atari games and the use of the
DPG and TRPO algorithms for continuous control tasks. Recall that DQN has the following
architecture:

Building Virtual Worlds in Minecraft Chapter 14

[292]

At each timestep , the agent observes the frame image and selects an action based on
the current learned policy. The emulator (the Minecraft environment) executes this action
and returns the next frame image and the corresponding reward . The quadruplet

 is then stored in the experience memory and is taken as a sample for
training the Q-network by minimizing the empirical loss function via stochastic gradient
descent.

Deep reinforcement learning algorithms based on experience replay have achieved
unprecedented success in playing Atari games. However, experience replay has several
disadvantages:

It uses more memory and computation per real interaction
It requires off-policy learning algorithms that can update from data generated by
an older policy

Building Virtual Worlds in Minecraft Chapter 14

[293]

In order to reduce memory consumption and accelerate the training of an AI agent, Mnih et
al. proposed an A3C framework for deep reinforcement learning that dramatically reduces
the training time without performance loss. This work, Asynchronous Methods for Deep
Reinforcement Learning, was published in ICML, 2016.

Instead of experience replay, A3C asynchronously executes multiple agents in parallel on
multiple instances of the environment, such as the Atari or Minecraft environments. Since
the parallel agents experience a variety of different states, this parallelism breaks the
correlation between the training samples and stabilizes the training procedure, which
means that the experience memory can be removed. This simple idea enables a much larger
spectrum of fundamental on-policy reinforcement learning algorithms, such as Sarsa and
actor-critic methods, as well as off-policy reinforcement learning algorithms, such as Q-
learning, to be applied robustly and effectively using deep neural networks.

Another advantage is that A3C is able to run on a standard multi-core CPU without relying
on GPUs or massively distributed architectures, and requires far less training time than
GPU-based algorithms, such as DQN, when applied to Atari games. A3C is good for a
beginner in deep reinforcement learning since you can apply it to Atari games on a
standard PC with multiple cores. For example, for Breakout, it takes only two-three hours
to achieve a score of 300 when executing eight agents in parallel.

In this chapter, we will use the same notations as before. At each timestep , the agent
observes state , takes action , and then receives the corresponding reward generated
from a function . We use to denote the policy of the agent, which maps
states to a probability distribution over the actions. The Bellman equation is as follows:

Building Virtual Worlds in Minecraft Chapter 14

[294]

The state-action value function can be approximated by a neural network parameterized
by , and the policy can also be represented by another neural network parameterized
by . Then, can be be trained by minimizing the following loss function:

 is the approximated state-action value function at step . In one-step Q-learning such as

DQN, equals , so that the following is true:

One drawback of using one-step Q-learning is that obtaining a reward only directly
affects the value of the state action pair that led to the reward. This can make the
learning process slow since many updates are required to propagate a reward to the
relevant preceding states and actions. One way of propagating rewards faster is by using n-
step returns. In n-step Q-learning, can be set to this:

As opposed to value-based methods, a policy-based method, such as TRPO, directly
optimizes the policy network . Besides TRPO, a much simpler method is REINFORCE,
which updates the policy parameter in the direction , where

 is the the advantage of action in state . This method is an
actor-critic approach due to the fact that it is required to estimate the value function
and the policy .

Building Virtual Worlds in Minecraft Chapter 14

[295]

The asynchronous reinforcement learning framework can be applied in the approaches
already discussed here. The main idea is that we run multiple agents in parallel with their
own instances of the environment, for example, multiple players play the same game using
their own games consoles. These agents are likely to be exploring different parts of the
environment. The parameters and are shared among all agents. Each agent updates
the policy and the value function asynchronously without considering read–write conflicts.
Although it seems weird that there is no synchronization in updating the policy, this
asynchronous method not only removes the communication costs of sending gradients and
parameters, but also guarantees the convergence. For more details, please refer to the
following paper: A lock-free approach to parallelizing stochastic gradient descent, Recht et al.
This chapter focuses on A3C, namely, we apply the asynchronous reinforcement learning
framework in REINFORCE. The following diagram shows the A3C architecture:

Building Virtual Worlds in Minecraft Chapter 14

[296]

For A3C, the policy and the value function are approximated by two
neural networks. A3C updates the policy parameter in the direction

, where is fixed, which is estimated by the following:

A3C updates the value function parameter by minimizing the loss:

 is computed via the previous estimate. To encourage exploration during training,
the entropy of the policy is also added to the policy update, acting as a regularization
term. Then, the gradient for the policy update becomes the following:

The following pseudo code shows the A3C algorithm for each agent (thread):

Initialize thread step counter ;
Initialize global shared parameters and ;
Repeat for each episode:
 Reset gradients and ;
 Synchronize thread-specific parameters and ;
 Set the start time step ;
 Receive an observation state ;
 While is not the terminal state and :
 Select an action according to ;
 Execute action in the simulator and observe reward and the
next state ;
 Set ;
 End While

 Set if is the terminal state or otherwise;

 For do
 Update ;
 Accumulate gradients wrt :

;

 Accumulate gradients wrt : ;
 End For

 Perform asynchronous update of using and of using .

Building Virtual Worlds in Minecraft Chapter 14

[297]

A3C uses ADAM or RMSProp to perform an asynchronous update of the parameters. For
different environments, it is hard to tell which method leads to better performance. We can
use RMSProp for the Atari and Minecraft environments.

Implementation of A3C
We will now look at how to implement A3C using Python and TensorFlow. Here, the
policy network and value network share the same feature representation. We implement
two kinds of policies: one is based on the CNN architecture used in DQN, and the other is
based on LSTM.

We implement the FFPolicy class for the policy based on CNN:

class FFPolicy:
 def __init__(self, input_shape=(84, 84, 4), n_outputs=4,
network_type='cnn'):
 self.width = input_shape[0]
 self.height = input_shape[1]
 self.channel = input_shape[2]
 self.n_outputs = n_outputs
 self.network_type = network_type
 self.entropy_beta = 0.01
 self.x = tf.placeholder(dtype=tf.float32,
 shape=(None, self.channel, self.width,
self.height))
 self.build_model()

The constructor requires three arguments:

 input_shape1.
n_outputs2.
network_type3.

Building Virtual Worlds in Minecraft Chapter 14

[298]

input_shape is the size of the input image. After data preprocessing, the input is an
84x84x4 image, so the default parameter is (84, 84, 4). n_outputs is the number of all the
available actions. network_type indicates the type of the feature representation we want
to use. Our implementation contains two different networks. One is the CNN architecture
used in DQN. The other is a feedforward neural network used for testing.

In the constructor, the x variable represents the input state (a batch of 84x84x41.
images). After creating the input tensors, the build_model function is called to
build the policy and value network. Here is the build_model:

 def build_model(self):
 self.net = {}
 self.net['input'] = tf.transpose(self.x, perm=(0, 2, 3, 1))
 if self.network_type == 'cnn':
 self.net['conv1'] = conv2d(self.net['input'], 16, kernel=(8,
8), stride=(4, 4), name='conv1')
 self.net['conv2'] = conv2d(self.net['conv1'], 32, kernel=(4,
4), stride=(2, 2), name='conv2')
 self.net['feature'] = linear(self.net['conv2'], 256,
name='fc1')
 else:
 self.net['fc1'] = linear(self.net['input'], 50, init_b =
tf.constant_initializer(0.0), name='fc1')
 self.net['feature'] = linear(self.net['fc1'], 50, init_b =
tf.constant_initializer(0.0), name='fc2')
 self.net['value'] = tf.reshape(linear(self.net['feature'], 1,
activation=None, name='value',
 init_b =
tf.constant_initializer(0.0)),
 shape=(-1,))
 self.net['logits'] = linear(self.net['feature'], self.n_outputs,
activation=None, name='logits',
 init_b = tf.constant_initializer(0.0))
 self.net['policy'] = tf.nn.softmax(self.net['logits'],
name='policy')
 self.net['log_policy'] = tf.nn.log_softmax(self.net['logits'],
name='log_policy')
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)

The CNN architecture contains two convolutional layers and one hidden layer, while the
feedforward architecture contains two hidden layers. As discussed previously, the policy
network and the value network share the same feature representation.

Building Virtual Worlds in Minecraft Chapter 14

[299]

The loss function for updating the network parameters can be constructed via the2.
following function:

 def build_gradient_op(self, clip_grad=None):

 self.action = tf.placeholder(dtype=tf.float32, shape=(None,
self.n_outputs), name='action')
 self.reward = tf.placeholder(dtype=tf.float32, shape=(None,),
name='reward')
 self.advantage = tf.placeholder(dtype=tf.float32, shape=(None,),
name='advantage')

 value = self.net['value']
 policy = self.net['policy']
 log_policy = self.net['log_policy']
 entropy = -tf.reduce_sum(policy * log_policy, axis=1)
 p_loss = -tf.reduce_sum(tf.reduce_sum(log_policy * self.action,
axis=1) * self.advantage + self.entropy_beta * entropy)
 v_loss = 0.5 * tf.reduce_sum((value - self.reward) ** 2)
 total_loss = p_loss + v_loss
 self.gradients = tf.gradients(total_loss, self.vars)
 if clip_grad is not None:
 self.gradients, _ = tf.clip_by_global_norm(self.gradients,
clip_grad)
 tf.summary.scalar("policy_loss", p_loss,
collections=['policy_network'])
 tf.summary.scalar("value_loss", v_loss,
collections=['policy_network'])
 tf.summary.scalar("entropy", tf.reduce_mean(entropy),
collections=['policy_network'])
 self.summary_op = tf.summary.merge_all('policy_network')
 return self.gradients

This function creates three input tensors: 3.
action1.
reward2.
advantage3.

Building Virtual Worlds in Minecraft Chapter 14

[300]

The action variable represents the selected actions . The reward variable is4.
the discounted cumulative reward in the preceding A3C algorithm. The
advantage variable is the advantage function computed by . In this
implementation, the losses of the policy and the value function are combined
together, since the feature representation layers are shared.
Therefore, instead of updating the policy parameter and the value parameter5.
separately, our implementation updates these parameters simultaneously. This
function also creates summary_op for TensorBoard visualization.

The implementation of the LSTM policy is quite similar to the feedforward policy. The
main difference is the build_model function:

 def build_model(self):
 self.net = {}
 self.net['input'] = tf.transpose(self.x, perm=(0, 2, 3, 1))
 if self.network_type == 'cnn':
 self.net['conv1'] = conv2d(self.net['input'], 16, kernel=(8,
8), stride=(4, 4), name='conv1')
 self.net['conv2'] = conv2d(self.net['conv1'], 32, kernel=(4,
4), stride=(2, 2), name='conv2')
 self.net['feature'] = linear(self.net['conv2'], 256,
name='fc1')
 else:
 self.net['fc1'] = linear(self.net['input'], 50, init_b =
tf.constant_initializer(0.0), name='fc1')
 self.net['feature'] = linear(self.net['fc1'], 50, init_b =
tf.constant_initializer(0.0), name='fc2')
 num_units = self.net['feature'].get_shape().as_list()[-1]
 self.lstm = tf.contrib.rnn.BasicLSTMCell(num_units=num_units,
forget_bias=0.0, state_is_tuple=True)
 self.init_state = self.lstm.zero_state(batch_size=1,
dtype=tf.float32)
 step_size = tf.shape(self.x)[:1]
 feature = tf.expand_dims(self.net['feature'], axis=0)
 lstm_outputs, lstm_state = tf.nn.dynamic_rnn(self.lstm, feature,
initial_state=self.init_state,
sequence_length=step_size,
 time_major=False)
 outputs = tf.reshape(lstm_outputs, shape=(-1, num_units))
 self.final_state = lstm_state
 self.net['value'] = tf.reshape(linear(outputs, 1, activation=None,
name='value',
 init_b =
tf.constant_initializer(0.0)),
 shape=(-1,))
 self.net['logits'] = linear(outputs, self.n_outputs,

Building Virtual Worlds in Minecraft Chapter 14

[301]

activation=None, name='logits',
 init_b = tf.constant_initializer(0.0))
 self.net['policy'] = tf.nn.softmax(self.net['logits'],
name='policy')
 self.net['log_policy'] = tf.nn.log_softmax(self.net['logits'],
name='log_policy')
 self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)

In this function, a LSTM layer follows the feature representation layers. In TensorFlow, you
can easily create a LSTM layer by constructing BasicLSTMCell and then calling
tf.nn.dynamic_rnn to get the layer outputs. tf.nn.dynamic_rnn returns the output for
each time step and the final cell state.

We now implement the main A3C algorithm—the A3C class:

class A3C:
 def __init__(self, system, directory, param, agent_index=0,
callback=None):
 self.system = system
 self.actions = system.get_available_actions()
 self.directory = directory
 self.callback = callback
 self.feedback_size = system.get_feedback_size()
 self.agent_index = agent_index
 self.set_params(param)
 self.init_network()

The system parameter is the emulator, either the Atari environment or Minecraft
environment. directory indicates the folder for the saved model and logs. param includes
all the training parameters of A3C, for example, the batch size and learning rate.
agent_index is the label for one agent. The constructor calls init_network to initialize
the policy network and the value network. Here is the implementation of init_network:

 def init_network(self):
 input_shape = self.feedback_size + (self.num_frames,)
 worker_device =
"/job:worker/task:{}/cpu:0".format(self.agent_index)
 with tf.device(tf.train.replica_device_setter(1,
worker_device=worker_device)):
 with tf.variable_scope("global"):
 if self.use_lstm is False:
 self.shared_network = FFPolicy(input_shape,
len(self.actions), self.network_type)
 else:
 self.shared_network = LSTMPolicy(input_shape,
len(self.actions), self.network_type)

Building Virtual Worlds in Minecraft Chapter 14

[302]

 self.global_step = tf.get_variable("global_step", shape=[],
initializer=tf.constant_initializer(0, dtype=tf.int32),
 trainable=False,
dtype=tf.int32)
 self.best_score = tf.get_variable("best_score", shape=[],
initializer=tf.constant_initializer(-1e2, dtype=tf.float32),
 trainable=False,
dtype=tf.float32)
 with tf.device(worker_device):
 with tf.variable_scope('local'):
 if self.use_lstm is False:
 self.network = FFPolicy(input_shape, len(self.actions),
self.network_type)
 else:
 self.network = LSTMPolicy(input_shape,
len(self.actions), self.network_type)
 # Sync params
 self.update_local_ops =
update_target_graph(self.shared_network.vars, self.network.vars)
 # Learning rate
 self.lr = tf.get_variable(name='lr', shape=[],
initializer=tf.constant_initializer(self.learning_rate),
 trainable=False,
dtype=tf.float32)
 self.t_lr = tf.placeholder(dtype=tf.float32, shape=[],
name='new_lr')
 self.assign_lr_op = tf.assign(self.lr, self.t_lr)
 # Best score
 self.t_score = tf.placeholder(dtype=tf.float32, shape=[],
name='new_score')
 self.assign_best_score_op = tf.assign(self.best_score,
self.t_score)
 # Build gradient_op
 self.increase_step = self.global_step.assign_add(1)
 gradients = self.network.build_gradient_op(clip_grad=40.0)
 # Additional summaries
 tf.summary.scalar("learning_rate", self.lr,
collections=['a3c'])
 tf.summary.scalar("score", self.t_score,
collections=['a3c'])
 tf.summary.scalar("best_score", self.best_score,
collections=['a3c'])
 self.summary_op = tf.summary.merge_all('a3c')
 if self.shared_optimizer:
 with tf.device(tf.train.replica_device_setter(1,
worker_device=worker_device)):
 with tf.variable_scope("global"):
 optimizer = create_optimizer(self.update_method,

Building Virtual Worlds in Minecraft Chapter 14

[303]

self.lr, self.rho, self.rmsprop_epsilon)
 self.train_op =
optimizer.apply_gradients(zip(gradients, self.shared_network.vars))
 else:
 with tf.device(worker_device):
 with tf.variable_scope('local'):
 optimizer = create_optimizer(self.update_method,
self.lr, self.rho, self.rmsprop_epsilon)
 self.train_op =
optimizer.apply_gradients(zip(gradients, self.shared_network.vars))

The tricky part in this function is how to implement the global shared parameters. In
TensorFlow, we can do this with the tf.train.replica_device_setter function. We
first create a global device shared among all the agents. Within this device, the global
shared network is created. Then, we create a local device and a local network for each
agent. To synchronize the global and local parameters, update_local_ops is created by
calling the update_target_graph function:

def update_target_graph(from_vars, to_vars):
 op_holder = []
 for from_var, to_var in zip(from_vars, to_vars):
 op_holder.append(to_var.assign(from_var))
 return op_holder

Then, the gradients op is constructed by calling build_gradient_op, which is used to
compute the gradient update for each agent. With gradients, an optimizer is built via the
create_optimizer function that is used for updating the global shared parameters. The
create_optimizer function is used as follows:

def create_optimizer(method, learning_rate, rho, epsilon):
 if method == 'rmsprop':
 opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
 decay=rho,
 epsilon=epsilon)
 elif method == 'adam':
 opt = tf.train.AdamOptimizer(learning_rate=learning_rate,
 beta1=rho)
 else:
 raise
 return opt

The main function in A3C is run, which starts and trains the agent:

 def run(self, sess, saver=None):
 num_of_trials = -1
 for episode in range(self.num_episodes):
 self.system.reset()

Building Virtual Worlds in Minecraft Chapter 14

[304]

 cell = self.network.run_initial_state(sess)
 state = self.system.get_current_feedback(self.num_frames)
 state = numpy.asarray(state / self.input_scale,
dtype=numpy.float32)
 replay_memory = []
 for _ in range(self.T):
 num_of_trials += 1
 global_step = sess.run(self.increase_step)
 if len(replay_memory) == 0:
 init_cell = cell
 sess.run(self.update_local_ops)
 action, value, cell = self.choose_action(sess, state, cell)
 r, new_state, termination = self.play(action)
 new_state = numpy.asarray(new_state / self.input_scale,
dtype=numpy.float32)
 replay = (state, action, r, new_state, value, termination)
 replay_memory.append(replay)
 state = new_state

 if len(replay_memory) == self.async_update_interval or
termination:
 states, actions, rewards, advantages =
self.n_step_q_learning(sess, replay_memory, cell)
 self.train(sess, states, actions, rewards, advantages,
init_cell, num_of_trials)
 replay_memory = []

 if global_step % 40000 == 0:
 self.save(sess, saver)
 if self.callback:
 self.callback()
 if termination:
 score = self.system.get_total_reward()
 summary_str = sess.run(self.summary_op,
feed_dict={self.t_score: score})
 self.summary_writer.add_summary(summary_str,
global_step)
 self.summary_writer.flush()
 break

 if global_step - self.eval_counter > self.eval_frequency:
 self.evaluate(sess, n_episode=10, saver=saver)
 self.eval_counter = global_step

Building Virtual Worlds in Minecraft Chapter 14

[305]

At each timestep, it calls choose_action to select an action according to the current policy,
and executes this action by calling play. Then, the received reward, the new state, and the
termination signal, as well as the current state and the selected action, are stored in the
replay_memory, which records the trajectory that the agent visited. Given this trajectory, it
then calls n_step_q_learning to estimate the cumulative reward and the advantage
function:

def n_step_q_learning(self, sess, replay_memory, cell):
 batch_size = len(replay_memory)
 w, h = self.system.get_feedback_size()
 states = numpy.zeros((batch_size, self.num_frames, w, h),
dtype=numpy.float32)
 rewards = numpy.zeros(batch_size, dtype=numpy.float32)
 advantages = numpy.zeros(batch_size, dtype=numpy.float32)
 actions = numpy.zeros((batch_size, len(self.actions)),
dtype=numpy.float32)
 for i in reversed(range(batch_size)):
 state, action, r, new_state, value, termination =
replay_memory[i]
 states[i] = state
 actions[i][action] = 1
 if termination != 0:
 rewards[i] = r
 else:
 if i == batch_size - 1:
 rewards[i] = r + self.gamma * self.Q_value(sess,
new_state, cell)
 else:
 rewards[i] = r + self.gamma * rewards[i+1]
 advantages[i] = rewards[i] - value
 return states, actions, rewards, advantages

It then updates the global shared parameters by calling train:

 def train(self, sess, states, actions, rewards, advantages, init_cell,
iter_num):
 lr = self.anneal_lr(iter_num)
 feed_dict = self.network.get_feed_dict(states, actions, rewards,
advantages, init_cell)
 sess.run(self.assign_lr_op, feed_dict={self.t_lr: lr})
 step = int((iter_num - self.async_update_interval + 1) /
self.async_update_interval)
 if self.summary_writer and step % 10 == 0:
 summary_str, _, step = sess.run([self.network.summary_op,
self.train_op, self.global_step],
 feed_dict=feed_dict)
 self.summary_writer.add_summary(summary_str, step)

Building Virtual Worlds in Minecraft Chapter 14

[306]

 self.summary_writer.flush()
 else:
 sess.run(self.train_op, feed_dict=feed_dict)

Note that the model will be saved on the disk after 40,000 updates, and an evaluation
procedure starts after self.eval_frequency updates.

To launch one agent, we can run the following codes written in the worker.py file:

import numpy, time, random
import argparse, os, sys, signal
import tensorflow as tf
from a3c import A3C
from cluster import cluster_spec
from environment import new_environment

def set_random_seed(seed):
 random.seed(seed)
 numpy.random.seed(seed)

def delete_dir(path):
 if tf.gfile.Exists(path):
 tf.gfile.DeleteRecursively(path)
 tf.gfile.MakeDirs(path)
 return path

def shutdown(signal, frame):
 print('Received signal {}: exiting'.format(signal))
 sys.exit(128 + signal)

def train(args, server):
 os.environ['OMP_NUM_THREADS'] = '1'
 set_random_seed(args.task * 17)
 log_dir = os.path.join(args.log_dir, '{}/train'.format(args.env))
 if not tf.gfile.Exists(log_dir):
 tf.gfile.MakeDirs(log_dir)

 game, parameter = new_environment(args.env)
 a3c = A3C(game, log_dir, parameter.get(), agent_index=args.task,
callback=None)

 global_vars = [v for v in tf.global_variables() if not
v.name.startswith("local")]
 ready_op = tf.report_uninitialized_variables(global_vars)
 config = tf.ConfigProto(device_filters=["/job:ps",
"/job:worker/task:{}/cpu:0".format(args.task)])

 with tf.Session(target=server.target, config=config) as sess:

Building Virtual Worlds in Minecraft Chapter 14

[307]

 saver = tf.train.Saver()
 path = os.path.join(log_dir, 'log_%d' % args.task)
 writer = tf.summary.FileWriter(delete_dir(path), sess.graph_def)
 a3c.set_summary_writer(writer)
 if args.task == 0:
 sess.run(tf.global_variables_initializer())
 else:
 while len(sess.run(ready_op)) > 0:
 print("Waiting for task 0 initializing the global
variables.")
 time.sleep(1)
 a3c.run(sess, saver)

def main():
 parser = argparse.ArgumentParser(description=None)
 parser.add_argument('-t', '--task', default=0, type=int, help='Task
index')
 parser.add_argument('-j', '--job_name', default="worker", type=str,
help='worker or ps')
 parser.add_argument('-w', '--num_workers', default=1, type=int,
help='Number of workers')
 parser.add_argument('-l', '--log_dir', default="save", type=str,
help='Log directory path')
 parser.add_argument('-e', '--env', default="demo", type=str,
help='Environment')
 args = parser.parse_args()
 spec = cluster_spec(args.num_workers, 1)
 cluster = tf.train.ClusterSpec(spec)

 signal.signal(signal.SIGHUP, shutdown)
 signal.signal(signal.SIGINT, shutdown)
 signal.signal(signal.SIGTERM, shutdown)
 if args.job_name == "worker":
 server = tf.train.Server(cluster,
 job_name="worker",
 task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=0,
inter_op_parallelism_threads=0)) # Use default op_parallelism_threads
 train(args, server)
 else:
 server = tf.train.Server(cluster,
 job_name="ps",
 task_index=args.task,
config=tf.ConfigProto(device_filters=["/job:ps"]))
 # server.join()
 while True:
 time.sleep(1000)

Building Virtual Worlds in Minecraft Chapter 14

[308]

if __name__ == "__main__":
 main()

The main function will create a new agent and begin the training procedure if
the job_name parameter is worker. Otherwise, it will start the TensorFlow parameter
server for the global shared parameters. Notice that before launching multiple agents, we
need to start the parameter server first. In the train function, an environment is created by
calling new_environment and then an agent is built for this environment. After the agent
is successfully created, the global shared parameters are initialized and the train procedure
starts by calling a3c.run(sess, saver).

Because manually launching 8 or 16 agents is quite inconvenient, this can be
done automatically by the following script:

import argparse, os, sys, cluster
from six.moves import shlex_quote

parser = argparse.ArgumentParser(description="Run commands")
parser.add_argument('-w', '--num_workers', default=1, type=int,
 help="Number of workers")
parser.add_argument('-e', '--env', type=str, default="demo",
 help="Environment")
parser.add_argument('-l', '--log_dir', type=str, default="save",
 help="Log directory path")

def new_cmd(session, name, cmd, logdir, shell):
 if isinstance(cmd, (list, tuple)):
 cmd = " ".join(shlex_quote(str(v)) for v in cmd)
 return name, "tmux send-keys -t {}:{} {} Enter".format(session, name,
shlex_quote(cmd))

def create_commands(session, num_workers, logdir, env, shell='bash'):

 base_cmd = ['CUDA_VISIBLE_DEVICES=',
 sys.executable,
 'worker.py',
 '--log_dir', logdir,
 '--num_workers', str(num_workers),
 '--env', env]

 cmds_map = [new_cmd(session, "ps", base_cmd + ["--job_name", "ps"],
logdir, shell)]
 for i in range(num_workers):
 cmd = base_cmd + ["--job_name", "worker", "--task", str(i)]
 cmds_map.append(new_cmd(session, "w-%d" % i, cmd, logdir, shell))
 cmds_map.append(new_cmd(session, "htop", ["htop"], logdir, shell))
 windows = [v[0] for v in cmds_map]

Building Virtual Worlds in Minecraft Chapter 14

[309]

 notes = ["Use `tmux attach -t {}` to watch process
output".format(session),
 "Use `tmux kill-session -t {}` to kill the
job".format(session),
 "Use `ssh -L PORT:SERVER_IP:SERVER_PORT username@server_ip` to
remote Tensorboard"]

 cmds = ["kill $(lsof -i:{}-{} -t) > /dev/null
2>&1".format(cluster.PORT, num_workers+cluster.PORT),
 "tmux kill-session -t {}".format(session),
 "tmux new-session -s {} -n {} -d {}".format(session,
windows[0], shell)]
 for w in windows[1:]:
 cmds.append("tmux new-window -t {} -n {} {}".format(session, w,
shell))
 cmds.append("sleep 1")

 for _, cmd in cmds_map:
 cmds.append(cmd)
 return cmds, notes

def main():
 args = parser.parse_args()
 cmds, notes = create_commands("a3c", args.num_workers, args.log_dir,
args.env)

 print("Executing the following commands:")
 print("\n".join(cmds))
 os.environ["TMUX"] = ""
 os.system("\n".join(cmds))
 print("Notes:")
 print('\n'.join(notes))
if __name__ == "__main__":
 main()

Building Virtual Worlds in Minecraft Chapter 14

[310]

This script creates the bash commands used to create the parameter server and a set of
agents. To handle the consoles of all the agents, we use TMUX (more information is
available at https://github.com/tmux/tmux/wiki). TMUX is a terminal multiplexer that
allows us to switch easily between several programs in one terminal, detach them, and
reattach them to a different terminal. TMUX is quite a convenient tool for checking the
training status of A3C. Note that since A3C runs on CPUs, we set
CUDA_VISIBLE_DEVICES to empty.

A3C is much more sensitive to the training parameters than DQN. Random seed, initial
weights, learning rate, batch size, discount factor, and even hyperparameters for RMSProp
can affect the performance a lot. After testing it on different Atari games, we select the
following hyperparameters listed in the Parameter class:

class Parameter:
 def __init__(self, lr=7e-4, directory=None):
 self.directory = directory
 self.learning_rate = lr
 self.gamma = 0.99
 self.num_history_frames = 4
 self.iteration_num = 100000
 self.async_update_interval = 5
 self.rho = 0.99
 self.rmsprop_epsilon = 1e-1
 self.update_method = 'rmsprop'
 self.clip_delta = 0
 self.max_iter_num = 10 ** 8
 self.network_type = 'cnn'
 self.input_scale = 255.0

Here, gamma is the discount factor, num_history_frames is the parameter frameskip,
async_update_interval is the batch size for the training update, and rho and
rmsprop_epsilon are the internal hyperparameters for RMSProp. This set of
hyperparameters can be used for both Atari and Minecraft.

https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki

Building Virtual Worlds in Minecraft Chapter 14

[311]

Experiments
The full implementation of the A3C algorithm can be downloaded from our GitHub
repository (https://github.com/PacktPublishing/Python-Reinforcement-Learning-
Projects). There are three environments in our implementation we can test. The first one is
the special game, demo, introduced in Chapter 7, Playing Atari Games. For this game, A3C
only needs to launch two agents to achieve good performance. Run the following command
in the src folder:

python3 train.py -w 2 -e demo

The first argument, -w, or --num_workers, indicates the number of launched agents. The
second argument, -e, or --env, specifies the environment, for example, demo. The other
two environments are Atari and Minecraft. For Atari games, A3C requires at least 8 agents
running in parallel. Typically, launching 16 agents can achieve better performance:

python3 train.py -w 8 -e Breakout

For Breakout, A3C takes about 2-3 hours to achieve a score of 300. If you have a decent PC
with more than 8 cores, it is better to test it with 16 agents. To test Minecraft, run the
following command:

python3 train.py -w 8 -e MinecraftBasic-v0

The Gym Minecraft environment provides more than 10 missions. To try other missions,
just replace MinecraftBasic-v0 with other mission names.

After running one of the preceding commands, type the following to monitor the training
procedure:

tmux attach -t a3c

To switch between console windows, press Ctrl + b and then press 0-9. Window 0 is the
parameter server. Windows 1-8 show the training stats of the 8 agents (if there are 8
launched agents). The last window runs htop. To detach TMUX, press Ctrl and then press b.

The tensorboard logs are saved in
the save/<environment_name>/train/log_<agent_index> folder. To visualize the
training procedure using TensorBoard, run the following command under this folder:

tensorboard --logdir=.

https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects
https://github.com/PacktPublishing/Python-Reinforcement-Learning-Projects

Building Virtual Worlds in Minecraft Chapter 14

[312]

Summary
This chapter introduced the Gym Minecraft environment, available at https://github.
com/tambetm/gym-minecraft. You have learned how to launch a Minecraft mission and
how to implement an emulator for it. The most important part of this chapter was the
asynchronous reinforcement learning framework. You learned what the shortcomings of
DQN are, and why DQN is difficult to apply in complex tasks. Then, you learned how to
apply the asynchronous reinforcement learning framework in the actor-critic method
REINFORCE, which led us to the A3C algorithm. Finally, you learned how to implement
A3C using Tensorflow and how to handle multiple terminals using TMUX. The tricky part
in the implementation is that of the global shared parameters. This is related to creating a
cluster of TensorFlow servers. For the readers who want to learn more about this, visit
https://www.tensorflow.org/deploy/distributed.

In the following chapters, you will learn more about how to apply reinforcement learning
algorithms in other tasks, for example, the board game Go, and generating deep image
classifiers. This will help you to get a deep understanding about reinforcement learning and
help you solve real-world problems.

https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://github.com/tambetm/gym-minecraft
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed

15
Learning to Play Go

When considering the capabilities of AI, we often compare its performance for a particular
task with what humans can achieve. AI agents are now able to surpass human-level
competency in more complex tasks. In this chapter, we will build an agent that learns how
to play what is considered the most complex board game of all time: Go. We will become
familiar with the latest deep reinforcement learning algorithms that achieve superhuman
performances, namely AlphaGo, and AlphaGo Zero, both of which were developed by
Google's DeepMind. We will also learn about Monte Carlo tree search, a popular tree-
searching algorithm that is an integral component of turn-based game agents.

This chapter will cover the following topics:

Introduction to Go and relevant research in AI
Overview of AlphaGo and AlphaGo Zero
The Monte Carlo tree search algorithm
Implementation of AlphaGo Zero

A brief introduction to Go
Go is a board game that was first recorded in China two millennia ago. Similar to other
common board games, such as chess, shogi, and Othello, Go involves two players
alternately placing black and white stones on a 19x19 board with the objective of capturing
as much territory as possible by surrounding a larger total area of the board. One can
capture their opponent's pieces by surrounding the opponent's pieces with their own
pieces. Captured stones are removed from the board, thereby creating a void in which the
opponent can no longer place stones unless the territory is captured back.

A game ends when both players refuse to place a stone or either player resigns. Upon the
termination of a game, the winner is decided by counting each player's territory and the
number of captured stones.

Learning to Play Go Chapter 15

[314]

Go and other board games
Researchers have already created AI programs that outperform the best human players in
board games such as chess and backgammon. In 1992, researchers from IBM developed TD-
Gammon, which used classic reinforcement learning algorithms and an artificial neural
network to play backgammon at the level of a top player. In 1997, Deep Blue, a chess-
playing program developed by IBM and Carnegie Mellon University, defeated then world
champion Garry Kasparov in a six-game face off. This was the first time that a computer
program defeated the world champion in chess.

Developing Go playing agents is not a new topic, and hence one may wonder what took so
long for researchers to replicate such successes in Go. The answer is simple—Go, despite its
simple rules, is a far more complex game than chess. Imagine representing a board game as
a tree, where each node is a snapshot of the board (which we also refer to as the board
state) and its child nodes are possible moves the opponent can make. The height of the tree
is essentially the number of moves a game lasts. A typical chess game lasts 80 moves,
whereas a game in Go lasts 150; almost twice as long. Moreover, while the average number
of possible moves in a chess turn is 35, a Go player has 250 possible plays per move. Based
on these numbers, Go has 10761 total possible games, compared to 10120 games in chess. It is
impossible to enumerate every possible state in Go in a computer, and the sheer complexity
of the game has made it difficult for researchers to develop an agent that can play the game
at a world-class level.

Go and AI research
In 2015, researchers from Google's DeepMind published a paper in Nature that detailed a
novel reinforcement learning agent for Go called AlphaGo. In October of that year,
AlphaGo beat Fan Hui, the European champion, 5-0. In 2016, AlphaGo challenged Lee
Sedol, who, with 18 world championship titles, is considered one of the greatest players in
modern history. AlphaGo won 4-1, marking a watershed moment in deep learning research
and the game's history. In the following year, DeepMind published an updated version of
AlphaGo, AlphaGo Zero, which defeated its predecessor 100 times in 100 games. In just a
matter of days of training, AlphaGo and AlphaGo Zero were able to learn and surpass the
wisdom that mankind has accumulated over the thousands of years of the game's existence.

The following sections will discuss how AlphaGo and AlphaGo Zero work, including the
algorithms and techniques that they use to learn and play the game. This will be followed
by an implementation of AlphaGo Zero. Our exploration begins with Monte Carlo tree
search, an algorithm that is integral to both AlphaGo and AlphaGo Zero for making
decisions on where to place stones.

Learning to Play Go Chapter 15

[315]

Monte Carlo tree search
In games such as Go and chess, players have perfect information, meaning they have access
to the full game state (the board and the positions of the pieces). Moreover, there lacks an
element of chance that can affect the game state; only the players' decisions can affect the
board. Such games are also referred to as perfect-information games. In perfect-information
games, it is theoretically possible to enumerate all possible game states. As discussed
earlier, this would look such as a tree, where each child node (a game state) is a possible
outcome of the parent. In two-player games, alternating levels of this tree represent moves
produced by the two competitors. Finding the best possible move for a given state is simply
a matter of traversing the tree and finding which sequence of moves leads to a win. We can
also store the value, or the expected outcome or reward (a win or a loss) of a given state, at
each node.

However, constructing a perfect tree is impractical in practice for games such as Go. So how
can an agent learn how to play the game without such knowledge? The Monte Carlo tree-
search (MCTS) algorithm provides an efficient approximation of this complete tree. In a
nutshell, MCTS involves playing a game iteratively, keeping statistics on states that were
visited, and learning which moves are more favorable/likely to lead to a win. The goal of
MCTS is to build a tree that approximates the aforementioned perfect tree as much as
possible. Each move in a game corresponds to an iteration of the MCTS algorithm. There
are four main steps in the algorithm: Selection, Expansion, Simulation, and Update (also
known as backpropagation). We will briefly detail each procedure.

Selection
The first step of MCTS involves playing the game intelligently. That means the algorithm
has enough experience to determine the next move given a state. One method for
determining the next move is called Upper Confidence Bound 1 Applied to Trees (UCT).
In short, this formula rates moves based on the following:

The mean reward of games where a given move was made
How often the move was selected

Each node's rating can be expressed as follows:

Learning to Play Go Chapter 15

[316]

Where:

: Is the mean reward for choosing move (for example, the win-rate)
: Is the number of times the algorithm selected move

: Is the total number of moves made after the current state (including move)
: Is an exploration parameter

The following diagram shows an example of selecting the next node. In each node, the left
number represents the node's rating, and the right number represents the number of times
the node was visited. The color of the node indicates which player's turn it is:

Figure 1: Selection in MCTS

In selection, the algorithm chooses the move that has the highest value for the preceding
expression. The keen reader may notice that, while moves with a high mean reward, , are
rated highly, so too are moves with fewer numbers of visits, . Why is this so? In MCTS,
we not only want the algorithm to choose moves that most likely result in wins but also to
try less-often-selected moves. This is commonly referred to as the balance between
exploitation and exploration. If the algorithm solely resorted to exploitation, the resulting
tree would be very narrow and ill-experienced. Encouraging exploration allows the
algorithm to learn from a broader set of experiences and simulations. In the preceding
example, we simply select the node with a rating of 7 and subsequently the node with a
rating of 4.

Learning to Play Go Chapter 15

[317]

Expansion
We apply selection to decide moves until the algorithm can no longer apply UCT to rate the
next set of moves. In particular, we can no longer apply UCT when not all of the child
nodes of a given state have records (number of visits, mean reward). This is when the
second phase of MCTS, expansion, occurs. Here, we simply look at all possible new moves
(unvisited child nodes) of a given state and randomly choose one. We then update the tree
to record this new child node. The following diagram illustrates this:

Figure 2: Expansion

You may be wondering from the preceding diagram why we initialize the visit count as
zero rather than one. The visit count of this new node as well as the statistics of the nodes
we have traversed so far will be incremented during the update step, which is the final step
of an MCTS iteration.

Learning to Play Go Chapter 15

[318]

Simulation
After expansion, the rest of the game is played by randomly choosing subsequent moves.
This is also commonly referred to as the playout or rollout. Depending on the game, some
heuristics may be applied to choose the next move. For example, in DeepBlue, simulations
rely on handcrafted heuristics to select the next move intelligently rather than randomly.
This is also called heavy rollouts. While such rollouts provide more realistic games, they
are often computationally expensive, which can slow down the learning of the MCTS tree:

Figure 3: Simulation

In our preceding toy example, we expand a node and play until the very end of the game
(represented by the dotted line), which results in either a win or loss. Simulation yields a
reward, which in this case is either 1 or 0.

Learning to Play Go Chapter 15

[319]

Update
Finally, the update step happens when the algorithm reaches a terminal state, or when
either player wins or the game culminates in a draw. For each node/state of the board that
was visited during this iteration, the algorithm updates the mean reward and increments
the visit count of that state. This is also called backpropagation:

Figure 4: Update

In the preceding diagram, since we reached a terminal state that returned 1 (a win), we
increment the visit count and reward accordingly for each node along the path from the
root node accordingly.

That concludes the four steps that occur in one MCTS iteration. As the name Monte Carlo
suggests, we conduct this search multiple times before we decide the next move to take.
The number of iterations is configurable, and often depends on time/resources available.
Over time, the tree learns a structure that approximates a perfect tree and can be used to
guide agents to make decisions.

Learning to Play Go Chapter 15

[320]

AlphaGo and AlphaGo Zero, DeepMind's revolutionary Go playing agents, rely on MCTS
to select moves. In the next section, we will explore the two algorithms to understand how
they combine neural networks and MCTS to play Go at a superhuman level of proficiency.

AlphaGo
AlphaGo's main innovation is how it combines deep learning and Monte Carlo tree search
to play Go. The AlphaGo architecture consists of four neural networks: a small supervised
learning policy network, a large supervised-learning policy network, a reinforcement
learning policy network, and a value network. We train all four of these networks plus the
MCTS tree. The following sections will cover each training step.

Supervised learning policy networks
The first step in training AlphaGo involves training policy networks on games played by
two professionals (in board games such as chess and Go, it is common to keep records of
historical games, the board state, and the moves made by each player at every turn). The
main idea is to make AlphaGo learn and understand how human experts play Go. More
formally, given a board state, , and set of actions, , we would like a policy network,

, to predict the next move the human makes. The data consists of pairs
of sampled from over 30,000,000 historical games from the KGS Go server. The input to the
network consists of the board state as well as metadata. AlphaGo has two supervised
learning policy networks of varying sizes. The large network is a 13-layer convolutional
neural network with ReLU activation functions in the hidden layers, while the smaller one
is a single-layer softmax network.

Why do we train two similar networks? The larger policy network initializes the weights of
the reinforcement learning policy network, which gets further refined through an RL
approach called policy gradients. The smaller network is used during the simulation step
of MCTS. Remember, while most simulations in MCTS rely on the randomized selection of
moves, one can also utilize light or heavy heuristics to have more intelligent simulations.
The smaller network, which lacks the accuracy of the larger supervised network yet yields
much faster inference, provides light heuristics for rollout.

Learning to Play Go Chapter 15

[321]

Reinforcement learning policy networks
Once the larger supervised learning policy network is trained, we further improve the
model by having the RL policy network play against a previous version of itself. The
weights of the network are updated using a method called policy gradients, which is a
variant of gradient descent for vanilla neural networks. Formally speaking, the gradient
update rule for the weights of our RL policy network can be expressed as follows:

Here, are the weights of the RL policy network, , and is the expected reward at
timestep . The reward is simply the outcome of the game, where a win results in +1 and a
loss results in -1. Herein lies the main difference between the supervised learning policy
network and the reinforcement learning policy network. For the former network, the
objective is to maximize the likelihood of choosing a particular action given a state, or, in
other words, to simply mimic the moves of the historical games. Since there is no reward
function involved, it does not care about the eventual outcome of the game.

On the other hand, the reinforcement learning policy network incorporates the final
outcome when updating the weights. More specifically, it is trying to maximize the log
likelihood of the moves that contribute to higher rewards (that is, winning moves). This is
because we are multiplying the gradient of the log-likelihood with the reward (either +1 or
-1), which essentially determines the direction in which to move the weights. The weights
of a poor move will be moved in the opposite direction, for we will likely be multiplying
the gradients with -1. To summarize, the network not only tries to figure out the most likely
move, but also one that helps it win. According to DeepMind's paper, the reinforcement
learning policy network won the vast majority (80%~85%) of its games against its
supervised counterpart and other Go playing programs, such as Pachi.

Value network
The last step of the pipeline involves training a value network to evaluate the board state,
or in other words, to determine how favorable a particular board state is for winning the
game. Formally speaking, given a particular policy, , and state, , we would like to
predict the expected reward, . The network is trained by minimizing the mean-squared
error (MSE) between the predicted value, , and the final outcome:

Learning to Play Go Chapter 15

[322]

Where are the parameters of the network. In practice, the network is trained on
30,000,000 state-reward pairs, each coming from a distinct game. The dataset is constructed
in this way because the board states from the same game can be highly correlated,
potentially leading to overfitting.

Combining neural networks and MCTS
In AlphaGo, the policy and value networks are combined with MCTS to provide a look-
ahead search when selecting actions in a game. Previously, we discussed how MCTS keeps
track of the mean reward and number of visits made to each node. In AlphaGo, we have a
few more values to keep track of:

: Which is the mean action value of choosing a particular action
: The probability of taking an action for a given board state given by the

larger supervised learning policy network
: The value evaluation of a state that is not explored yet (a leaf node)
: The number of times a particular action was chosen given a state

During a single simulation of our tree search, the algorithm selects an action, , for a given
state, , at a particular timestep, , according to the following formula:

Where

Hence is a value that favors moves determined to be more likely by the larger
policy network, but also supports exploration by penalizing those that have been visited
more frequently.

During expansion, when we don't have the preceding statistics for a given board state and
move, we use the value network and the simulation to evaluate the leaf node. In particular,
we take a weighted sum of the expected value given by the value network and outcome of
the rollout:

Learning to Play Go Chapter 15

[323]

Where is the evaluation of the value network, is the eventual reward of the
search, and is the weighting term that is often referred to as the mixing
parameter. is obtained after rollout, where the simulations are conducted using the smaller
and faster supervised learning policy network. Having fast rollouts is important, especially
in situations where decisions are time-boxed, hence the need for the smaller policy
network.

Finally, during the update step of MCTS, visit counts for each node are updated. Moreover,
the action values are recalculated by taking the mean reward of all simulations that
included a given node:

Where is the total reward across the times MCTS took action at node .
After the MCTS search, the model chooses the most frequently-visited move when actually
playing the game.

And that concludes a rudimentary overview of AlphaGo. While an in-depth exposition of
the architecture and methodology is beyond the scope of this book, this hopefully serves as
an introductory guide to what makes AlphaGo work.

AlphaGo Zero
We will cover AlphaGo Zero, the upgraded version of its predecessor before we finally get
into some coding. The main features of AlphaGo Zero address some of the drawbacks of
AlphaGo, including its dependency on a large corpus of games played by human experts.

The main differences between AlphaGo Zero and AlphaGo are the following:

AlphaGo Zero is trained solely with self-play reinforcement learning, meaning it
does not rely on any human-generated data or supervision that is used to train
AlphaGo
Policy and value networks are represented as one network with two heads rather
than two separate ones
The input to the network is the board itself as an image, such as a 2D grid; the
network does not rely on heuristics and instead uses the raw board state itself
In addition to finding the best move, Monte Carlo tree search is also used for
policy iteration and evaluation; moreover, AlphaGo Zero does not conduct
rollouts during a search

Learning to Play Go Chapter 15

[324]

Training AlphaGo Zero
Since we don't use human-generated data for training or supervision, how does AlphaGo
Zero learn at all? The novel reinforcement learning algorithm developed by DeepMind
involves using MCTS as a teacher for the neural network, which represents both policy and
value functions.

In particular, the outputs of MCTS are 1) probabilities, , for each selecting move during the
simulation, and 2) the final outcome of the game, . The neural network, , takes in a board
state, , and also outputs a tuple of , where is a vector of move probabilities and is
the value of . Given these outputs, we want to train our network such that the network's
policy, , moves closer to the policy, , that is produced by MCTS, and the network's value,
, moves closer to the eventual outcome, , of the search. Note that in MCTS, the algorithm

does not conduct rollouts, but instead relies on for expansion and simulating the whole
game until termination. Hence by the end of MCTS, the algorithm improves the policy
from to and is able to act as a teacher for . The loss function for the network consists of
two parts: one is the cross-entropy between and , and the other is the mean-squared
error between and . This joint loss function looks as follows:

Where is network parameters and is a parameter for L2-regularization.

Comparison with AlphaGo
According to DeepMind's paper, AlphaGo Zero was able to outperform AlphaGo in 36
hours, whereas the latter took months to train. In a head-to-head competition with the
version of AlphaGo that defeated Lee Sedol, AlphaGo Zero won 100 games out of 100.
What's significant about these results is that, even without initial human supervision, a Go
playing program can reach superhuman-level proficiency more efficiently and is able to
discover much of the knowledge and wisdom that humanity spent thousands of years and
millions of games cultivating.

In the following sections, we will finally implement this powerful algorithm. Additional
technical details of AlphaGo Zero will be covered as we go through the code.

Learning to Play Go Chapter 15

[325]

Implementing AlphaGo Zero
At last, we will implement AlphaGo Zero in this section. In addition to achieving better
performance than AlphaGo, it is in fact relatively easier to implement. This is because, as
discussed, AlphaGo Zero only relies on selfplay data for learning, and thus relieves us
from the burden of searching for large amounts of historical data. Moreover, we only need
to implement one neural network that serves as both the policy and value function. The
following implementation makes some further simplifications—for example, we assume
that the Go board size is 9 instead of 19. This is to allow for faster training.

The directory structure of our implementation looks such as the following:

alphago_zero/
|-- __init__.py
|-- config.py
|-- constants.py
|-- controller.py
|-- features.py
|-- go.py
|-- mcts.py
|-- alphagozero_agent.py
|-- network.py
|-- preprocessing.py
|-- train.py
`-- utils.py

We will especially pay attention to network.py and mcts.py, which contain the
implementations for the dual network and the MCTS algorithm.
Moreover, alphagozero_agent.py contains the implementation for combining the dual
network and MCTS to create a Go playing agent.

Policy and value networks
Let's get started with implementing the dual network, which we will
call PolicyValueNetwork. First, we will create a few modules that contain configurations
and constants that our PolicyValueNetwork will use.

Learning to Play Go Chapter 15

[326]

preprocessing.py
The preprocessing.py module mainly deals with reading from and writing
to TFRecords files, which is TensorFlow's native data-representation file format. When
training AlphaGo Zero, we store MCTS self-play results and moves. As discussed, these
then become the ground truths from which PolicyValueNetwork learns. TFRecords
provides a convenient way to save historical moves and results from MCTS. When reading
these from disk, preprocessing.py turns TFRecords into tf.train.Example, an in-
memory representation of data that can be directly fed into tf.estimator.Estimator.

 tf_records usually have filenames that end with *.tfrecord.zz.

The following function reads from a TFRecords file. We first turn a given list
of TFRecords into tf.data.TFRecordDataset, an intermediate representation before we
turn them into tf.train.Example:

def process_tf_records(list_tf_records, shuffle_records=True,
buffer_size=GLOBAL_PARAMETER_STORE.SHUFFLE_BUFFER_SIZE,
 batch_size=GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE):

 if shuffle_records:
 random.shuffle(list_tf_records)

 list_dataset = tf.data.Dataset.from_tensor_slices(list_tf_records)

 tensors_dataset = list_dataset.interleave(map_func=lambda x:
tf.data.TFRecordDataset(x, compression_type='ZLIB'),
cycle_length=GLOBAL_PARAMETER_STORE.CYCLE_LENGTH,
block_length=GLOBAL_PARAMETER_STORE.BLOCK_LENGTH)
 tensors_dataset =
tensors_dataset.repeat(1).shuffle(buffer_siz=buffer_size).batch(batch_size)

 return tensors_dataset

The next step involves parsing this dataset so that we can feed the values
into PolicyValueNetwork. There are three values we care about: the input, which we call
either x or board_state throughout the implementation, the policy, pi, and the
outcome, z, both of which are outputted by the MCTS algorithm:

def parse_batch_tf_example(example_batch):
 features = {
 'x': tf.FixedLenFeature([], tf.string),

Learning to Play Go Chapter 15

[327]

 'pi': tf.FixedLenFeature([], tf.string),
 'z': tf.FixedLenFeature([], tf.float32),
 }
 parsed_tensors = tf.parse_example(example_batch, features)

 # Get the board state
 x = tf.cast(tf.decode_raw(parsed_tensors['x'], tf.uint8), tf.float32)
 x = tf.reshape(x, [GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE,
GOPARAMETERS.N,
 GOPARAMETERS.N, FEATUREPARAMETERS.NUM_CHANNELS])

 # Get the policy target, which is the distribution of possible moves
 # Each target is a vector of length of board * length of board + 1
 distribution_of_moves = tf.decode_raw(parsed_tensors['pi'], tf.float32)
 distribution_of_moves = tf.reshape(distribution_of_moves,
[GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE, GOPARAMETERS.N * GOPARAMETERS.N +
1])

 # Get the result of the game
 # The result is simply a scalar
 result_of_game = parsed_tensors['z']
 result_of_game.set_shape([GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE])

 return (x, {'pi_label': distribution_of_moves, 'z_label':
result_of_game})

The preceding two functions are combined in the following function to construct the input
tensors to be fed into the network:

def get_input_tensors(list_tf_records,
buffer_size=GLOBAL_PARAMETER_STORE.SHUFFLE_BUFFER_SIZE):
 logger.info("Getting input data and tensors")
 dataset = process_tf_records(list_tf_records=list_tf_records,
 buffer_size=buffer_size)
 dataset = dataset.filter(lambda input_tensor:
tf.equal(tf.shape(input_tensor)[0],
GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE))
 dataset = dataset.map(parse_batch_tf_example)
 logger.info("Finished parsing")
 return dataset.make_one_shot_iterator().get_next()

Finally, the following functions are used to write self-play results to disk:

def create_dataset_from_selfplay(data_extracts):
 return (create_tf_train_example(extract_features(board_state), pi,
result)
 for board_state, pi, result in data_extracts)

Learning to Play Go Chapter 15

[328]

def shuffle_tf_examples(batch_size, records_to_shuffle):
 tf_dataset = process_tf_records(records_to_shuffle,
batch_size=batch_size)
 iterator = tf_dataset.make_one_shot_iterator()
 next_dataset_batch = iterator.get_next()
 sess = tf.Session()
 while True:
 try:
 result = sess.run(next_dataset_batch)
 yield list(result)
 except tf.errors.OutOfRangeError:
 break

def create_tf_train_example(board_state, pi, result):
 board_state_as_tf_feature =
tf.train.Feature(bytes_list=tf.train.BytesList(value=[board_state.tostring(
)]))
 pi_as_tf_feature =
tf.train.Feature(bytes_list=tf.train.BytesList(value=[pi.tostring()]))
 value_as_tf_feature =
tf.train.Feature(float_list=tf.train.FloatList(value=[result]))

 tf_example = tf.train.Example(features=tf.train.Features(feature={
 'x': board_state_as_tf_feature,
 'pi': pi_as_tf_feature,
 'z': value_as_tf_feature
 }))

 return tf_example

def write_tf_examples(record_path, tf_examples, serialize=True):
 with tf.python_io.TFRecordWriter(record_path, options=TF_RECORD_CONFIG)
as tf_record_writer:
 for tf_example in tf_examples:
 if serialize:
 tf_record_writer.write(tf_example.SerializeToString())
 else:
 tf_record_writer.write(tf_example)

Some of these functions will be used later when we generate training data from self-play
results.

Learning to Play Go Chapter 15

[329]

features.py
This module contains helper code for turning Go board representations into proper
TensorFlow tensors, which can be provided to PolicyValueNetwork. The main
function, extract_features, takes board_state, which is our representation of a Go
board, and turns it into a tensor of the [batch_size, N, N, 17] shape, where N is the
shape of the board (which is by default 9), and 17 is the number of feature channels,
representing the past moves as well as the color to play:

import numpy as np

from config import GOPARAMETERS

def stone_features(board_state):
 # 16 planes, where every other plane represents the stones of a
particular color
 # which means we track the stones of the last 8 moves.
 features = np.zeros([16, GOPARAMETERS.N, GOPARAMETERS.N],
dtype=np.uint8)

 num_deltas_avail = board_state.board_deltas.shape[0]
 cumulative_deltas = np.cumsum(board_state.board_deltas, axis=0)
 last_eight = np.tile(board_state.board, [8, 1, 1])
 last_eight[1:num_deltas_avail + 1] -= cumulative_deltas
 last_eight[num_deltas_avail +1:] =
last_eight[num_deltas_avail].reshape(1, GOPARAMETERS.N, GOPARAMETERS.N)

 features[::2] = last_eight == board_state.to_play
 features[1::2] = last_eight == -board_state.to_play
 return np.rollaxis(features, 0, 3)

def color_to_play_feature(board_state):
 # 1 plane representing which color is to play
 # The plane is filled with 1's if the color to play is black; 0's
otherwise
 if board_state.to_play == GOPARAMETERS.BLACK:
 return np.ones([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8)
 else:
 return np.zeros([GOPARAMETERS.N, GOPARAMETERS.N, 1],
dtype=np.uint8)

def extract_features(board_state):
 stone_feat = stone_features(board_state=board_state)
 turn_feat = color_to_play_feature(board_state=board_state)
 all_features = np.concatenate([stone_feat, turn_feat], axis=2)
 return all_features

Learning to Play Go Chapter 15

[330]

The extract_features function will be used by both the preprocessing.py
and network.py modules to construct the feature tensors to be either written to
a TFRecord file or fed into a neural network.

network.py
This file contains our implementation of PolicyValueNetwork. In short, we construct
a tf.estimator.Estimator that is trained using board states, policies, and self-play
outcomes produced by MCTS self-play. The network has two heads: one acting as a value
function, and the other acting as a policy network.

First, we define some layers that will be used by PolicyValueNetwork:

import functools
import logging
import os.path

import tensorflow as tf

import features
import preprocessing
import utils
from config import GLOBAL_PARAMETER_STORE, GOPARAMETERS
from constants import *

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

def create_partial_bn_layer(params):
 return functools.partial(tf.layers.batch_normalization,
 momentum=params["momentum"],
 epsilon=params["epsilon"],
 fused=params["fused"],
 center=params["center"],
 scale=params["scale"],
 training=params["training"]
)

def create_partial_res_layer(inputs, partial_bn_layer,
partial_conv2d_layer):
 output_1 = partial_bn_layer(partial_conv2d_layer(inputs))
 output_2 = tf.nn.relu(output_1)
 output_3 = partial_bn_layer(partial_conv2d_layer(output_2))
 output_4 = tf.nn.relu(tf.add(inputs, output_3))
 return output_4

Learning to Play Go Chapter 15

[331]

def softmax_cross_entropy_loss(logits, labels):
 return
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=labels['pi_label']))

def mean_squared_loss(output_value, labels):
 return tf.reduce_mean(tf.square(output_value - labels['z_label']))

def get_losses(logits, output_value, labels):
 ce_loss = softmax_cross_entropy_loss(logits, labels)
 mse_loss = mean_squared_loss(output_value, labels)
 return ce_loss, mse_loss

def create_metric_ops(labels, output_policy, loss_policy, loss_value,
loss_l2, loss_total):
 return {'accuracy': tf.metrics.accuracy(labels=labels['pi_label'],
predictions=output_policy, name='accuracy'),
 'loss_policy': tf.metrics.mean(loss_policy),
 'loss_value': tf.metrics.mean(loss_value),
 'loss_l2': tf.metrics.mean(loss_l2),
 'loss_total': tf.metrics.mean(loss_total)}

Next, we have a function that is used to create tf.estimator.Estimator. While
TensorFlow provides several prebuilt estimators, such as tf.estimator.DNNClassifier,
our architecture is rather unique, which is why we need to build our own Estimator. This
can be done by creating tf.estimator.EstimatorSpec, a skeleton class where we can
define things such as the output tensors, network architecture, the loss functions, and the
evaluation metrics:

def generate_network_specifications(features, labels, mode, params,
config=None):
 batch_norm_params = {"epsilon": 1e-5, "fused": True, "center": True,
"scale": True, "momentum": 0.997,
 "training": mode==tf.estimator.ModeKeys.TRAIN
 }

Our generate_network_specifications function takes several input:

features: The tensor representation of the Go board (with the [batch_size,
9, 9, 17] shape)
labels: Our pi and z tensors
mode: Here, we can specify whether our network is being instantiated in train or
test mode
params: Additional parameters to specify the network structure (for example,
convolutional filter size)

Learning to Play Go Chapter 15

[332]

We then implement the shared portion of the network, the policy output head, the value
output head, and then the loss functions:

with tf.name_scope("shared_layers"):
 partial_bn_layer = create_partial_bn_layer(batch_norm_params)
 partial_conv2d_layer = functools.partial(tf.layers.conv2d,
 filters=params[HYPERPARAMS.NUM_FILTERS], kernel_size=[3, 3],
padding="same")
 partial_res_layer = functools.partial(create_partial_res_layer,
batch_norm=partial_bn_layer,
 conv2d=partial_conv2d_layer)

 output_shared =
tf.nn.relu(partial_bn_layer(partial_conv2d_layer(features)))

 for i in range(params[HYPERPARAMS.NUMSHAREDLAYERS]):
 output_shared = partial_res_layer(output_shared)

Implement the policy network
with tf.name_scope("policy_network"):
 conv_p_output =
tf.nn.relu(partial_bn_layer(partial_conv2d_layer(output_shared, filters=2,
kernel_size=[1, 1]),
center=False, scale=False))
 logits = tf.layers.dense(tf.reshape(conv_p_output, [-1, GOPARAMETERS.N
* GOPARAMETERS.N * 2]),
 units=GOPARAMETERS.N * GOPARAMETERS.N + 1)
 output_policy = tf.nn.softmax(logits,
 name='policy_output')

Implement the value network
with tf.name_scope("value_network"):
 conv_v_output =
tf.nn.relu(partial_bn_layer(partial_conv2d_layer(output_shared, filters=1,
kernel_size=[1, 1]),
 center=False, scale=False))
 fc_v_output = tf.nn.relu(tf.layers.dense(
 tf.reshape(conv_v_output, [-1, GOPARAMETERS.N * GOPARAMETERS.N]),
 params[HYPERPARAMS.FC_WIDTH]))
 fc_v_output = tf.layers.dense(fc_v_output, 1)
 fc_v_output = tf.reshape(fc_v_output, [-1])
 output_value = tf.nn.tanh(fc_v_output, name='value_output')

Implement the loss functions
with tf.name_scope("loss_functions"):
 loss_policy, loss_value = get_losses(logits=logits,
 output_value=output_value,
 labels=labels)

Learning to Play Go Chapter 15

[333]

 loss_l2 = params[HYPERPARAMS.BETA] * tf.add_n([tf.nn.l2_loss(v)
 for v in tf.trainable_variables() if not 'bias' in v.name])
 loss_total = loss_policy + loss_value + loss_l2

We then specify the optimization algorithm. Here, we
use tf.train.MomentumOptimizer. We also adjust the learning rate during training;
because we can't directly alter the learning rate once we create Estimator, we turn the
learning rate update into a TensorFlow operation as well. We also log several metrics to
TensorBoard:

Steps and operations for training
global_step = tf.train.get_or_create_global_step()

learning_rate = tf.train.piecewise_constant(global_step,
GLOBAL_PARAMETER_STORE.BOUNDARIES,
GLOBAL_PARAMETER_STORE.LEARNING_RATE)

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

with tf.control_dependencies(update_ops):
 train_op = tf.train.MomentumOptimizer(learning_rate,
 params[HYPERPARAMS.MOMENTUM]).minimize(loss_total,
global_step=global_step)

metric_ops = create_metric_ops(labels=labels,
 output_policy=output_policy,
 loss_policy=loss_policy,
 loss_value=loss_value,
 loss_l2=loss_l2,
 loss_total=loss_total)

for metric_name, metric_op in metric_ops.items():
 tf.summary.scalar(metric_name, metric_op[1])

Finally, we create a tf.estmator.EstimatorSpec object and return it. There are several
parameters we need to specify when creating one:

mode: Train or test, as specified earlier.
predictions: A dictionary that maps a string (name) to the output operation of
the network. Note that we can specify multiple output operations.
loss: The loss function operation.
train_op: The optimization operation.
eval_metrics_op: Operations that are run to store several metrics, such as loss,
accuracy, and variable weight values.

Learning to Play Go Chapter 15

[334]

For the predictions argument, we provide outputs of both the policy and value
networks:

return tf.estimator.EstimatorSpec(
 mode=mode,
 predictions={
 'policy_output': output_policy,
 'value_output': output_value,
 },
 loss=loss_total,
 train_op=train_op,
 eval_metric_ops=metric_ops,
)

In the very first step of training AlphaGo Zero, we must initialize a model with random
weights. The following function implements this:

def initialize_random_model(estimator_dir, **kwargs):
 sess = tf.Session(graph=tf.Graph())
 params = utils.parse_parameters(**kwargs)
 initial_model_path = os.path.join(estimator_dir,
PATHS.INITIAL_CHECKPOINT_NAME)

 # Create the first model, where all we do is initialize random weights
and immediately write them to disk
 with sess.graph.as_default():
 features, labels = get_inference_input()
 generate_network_specifications(features, labels,
tf.estimator.ModeKeys.PREDICT, params)
 sess.run(tf.global_variables_initializer())
 tf.train.Saver().save(sess, initial_model_path)

We use the following function to create the tf.estimator.Estimator object based on a
given set of parameters:

def get_estimator(estimator_dir, **kwargs):
 params = utils.parse_parameters(**kwargs)
 return tf.estimator.Estimator(generate_network_specifications,
model_dir=estimator_dir, params=params)

tf.estimator.Estimator expects a function that
provides tf.estimator.EstimatorSpec, which is
our generate_network_specifications function. Here, estimator_dir refers to a
directory in which our network stores checkpoints. By providing this parameter,
our tf.estimator.Estimator object can load weights from a previous iteration of
training.

Learning to Play Go Chapter 15

[335]

We also implement functions for training and validating a model:

def train(estimator_dir, tf_records, model_version, **kwargs):
 """
 Main training function for the PolicyValueNetwork
 Args:
 estimator_dir (str): Path to the estimator directory
 tf_records (list): A list of TFRecords from which we parse the
training examples
 model_version (int): The version of the model
 """
 model = get_estimator(estimator_dir, **kwargs)
 logger.info("Training model version: {}".format(model_version))
 max_steps = model_version *
GLOBAL_PARAMETER_STORE.EXAMPLES_PER_GENERATION // \
 GLOBAL_PARAMETER_STORE.TRAIN_BATCH_SIZE
 model.train(input_fn=lambda:
preprocessing.get_input_tensors(list_tf_records=tf_records),
 max_steps=max_steps)
 logger.info("Trained model version: {}".format(model_version))

def validate(estimator_dir, tf_records, checkpoint_path=None, **kwargs):
 model = get_estimator(estimator_dir, **kwargs)
 if checkpoint_path is None:
 checkpoint_path = model.latest_checkpoint()
 model.evaluate(input_fn=lambda: preprocessing.get_input_tensors(
 list_tf_records=tf_records,
 buffer_size=GLOBAL_PARAMETER_STORE.VALIDATION_BUFFER_SIZE),
 steps=GLOBAL_PARAMETER_STORE.VALIDATION_NUMBER_OF_STEPS,
 checkpoint_path=checkpoint_path)

The tf.estimator.Estimator.train function expects a function that provides the
training data in batches (input_fn). input_data uses our get_input_tensors function
from the preprocessing.py module to parse TFRecords data and turn them into input
tensors. The tf.estimator.Estimator.evaluate function expects the same input
function.

We finally encapsulate our estimator into our PolicyValueNetwork. This class uses the
path to a network (model_path) and loads its weights. It uses the network to predict the
value and most probable next moves of a given board state:

class PolicyValueNetwork():

 def __init__(self, model_path, **kwargs):
 self.model_path = model_path
 self.params = utils.parse_parameters(**kwargs)

Learning to Play Go Chapter 15

[336]

 self.build_network()

 def build_session(self):
 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 return tf.Session(graph=tf.Graph(), config=config)

 def build_network(self):
 self.sess = self.build_session()

 with self.sess.graph.as_default():
 features, labels = get_inference_input()
 model_spec = generate_network_specifications(features, labels,
tf.estimator.ModeKeys.PREDICT, self.params)
 self.inference_input = features
 self.inference_output = model_spec.predictions
 if self.model_path is not None:
 self.load_network_weights(self.model_path)
 else:
 self.sess.run(tf.global_variables_initializer())

 def load_network_weights(self, save_file):
 tf.train.Saver().restore(self.sess, save_file)

The model_path argument passed to the constructor is the directory of a particular version
of the model. When this is None, we initialize random weights. The following functions are
used to predict the probabilities of the next action and the value of a given board state:

def predict_on_single_board_state(self, position):
 probs, values = self.predict_on_multiple_board_states([position])
 prob = probs[0]
 value = values[0]
 return prob, value

def predict_on_multiple_board_states(self, positions):
 symmetries, processed =
utils.shuffle_feature_symmetries(list(map(features.extract_features,
positions)))
 network_outputs = self.sess.run(self.inference_output,
feed_dict={self.inference_input: processed})
 action_probs, value_pred = network_outputs['policy_output'],
network_outputs['value_output']
 action_probs = utils.invert_policy_symmetries(symmetries, action_probs)
 return action_probs, value_pred

Learning to Play Go Chapter 15

[337]

Do check the GitHub repository for the full implementation of the module.

Monte Carlo tree search
The second component of our AlphaGo Zero agent is the MCTS algorithm. In our mcts.py
module, we implement an MCTreeSearchNode class, which represents each node in an
MCTS tree during a search. This is then used by the agent implemented
in alphagozero_agent.py to perform MCTS using PolicyValueNetwork, which we
implemented just now.

mcts.py
mcts.py contains our implementation of Monte Carlo tree search. Our first class
is RootNode, which is meant to represent the root node of the MCTS tree at the start of a
simulation. By definition, the root node does not have a parent. Having a separate class for
the root node is not absolutely necessary, but it does keep the code cleaner:

import collections
import math

import numpy as np

import utils
from config import MCTSPARAMETERS, GOPARAMETERS

class RootNode(object):

 def __init__(self):
 self.parent_node = None
 self.child_visit_counts = collections.defaultdict(float)
 self.child_cumulative_rewards = collections.defaultdict(float)

Next, we implement the MCTreeSearchNode class. This class has several attributes, the
most important ones being the following:

parent_node: The parent node
previous_move: The previous move that led to this node's board state

Learning to Play Go Chapter 15

[338]

board_state: The current board state
is_visited: Whether the leaves (child nodes) are expanded or not; this is False
when the node is initialized
child_visit_counts: A numpy.ndarray representing the visit counts of each
child node
child_cumulative_rewards: A numpy.ndarray representing the cumulative
reward of each child node
children_moves: A dictionary of children moves

We also have parameters such as loss_counter, original_prior, and child_prior.
These are related to advanced MCTS techniques that AlphaGo Zero implements, such as
paralleling the search process as well as adding noise to the search. For the sake of brevity,
we won't cover these techniques, so you can ignore them for now.

Here's the __init__ function of MCTreeSearchNode:

class MCTreeSearchNode(object):

 def __init__(self, board_state, previous_move=None, parent_node=None):
 """
 A node of a MCTS tree. It is primarily responsible with keeping
track of its children's scores
 and other statistics such as visit count. It also makes decisions
about where to move next.

 board_state (go.BoardState): The Go board
 fmove (int): A number which represents the coordinate of the move
that led to this board state. None if pass
 parent (MCTreeSearchNode): The parent node
 """
 if parent_node is None:
 parent_node = RootNode()
 self.parent_node = parent_node
 self.previous_move = previous_move
 self.board_state = board_state
 self.is_visited = False
 self.loss_counter = 0
 self.illegal_moves = 1000 * (1 -
self.board_state.enumerate_possible_moves())
 self.child_visit_counts = np.zeros([GOPARAMETERS.N * GOPARAMETERS.N
+ 1], dtype=np.float32)
 self.child_cumulative_rewards = np.zeros([GOPARAMETERS.N *
GOPARAMETERS.N + 1], dtype=np.float32)
 self.original_prior = np.zeros([GOPARAMETERS.N * GOPARAMETERS.N +
1], dtype=np.float32)

Learning to Play Go Chapter 15

[339]

 self.child_prior = np.zeros([GOPARAMETERS.N * GOPARAMETERS.N + 1],
dtype=np.float32)
 self.children_moves = {}

Each node keeps track of the mean reward and action value of every child node. We set
these as properties:

@property
def child_action_score(self):
 return self.child_mean_rewards * self.board_state.to_play +
self.child_node_scores - self.illegal_moves

@property
def child_mean_rewards(self):
 return self.child_cumulative_rewards / (1 + self.child_visit_counts)

@property
def child_node_scores(self):
 # This scores each child according to the UCT scoring system
 return (MCTSPARAMETERS.c_PUCT * math.sqrt(1 + self.node_visit_count) *
self.child_prior /
 (1 + self.child_visit_counts))

And of course, we keep track of the action value, visit count, and cumulative reward of the
node itself. Remember, child_mean_rewards is the mean reward, child_visit_counts
is the number of times a child node was visited, and child_cumulative_rewards is the
total reward of a node. We implement getters and setters for each attribute by adding
the @property and @*.setter decorators:

@property
def node_mean_reward(self):
 return self.node_cumulative_reward / (1 + self.node_visit_count)

@property
def node_visit_count(self):
 return self.parent_node.child_visit_counts[self.previous_move]

@node_visit_count.setter
def node_visit_count(self, value):
 self.parent_node.child_visit_counts[self.previous_move] = value

@property
def node_cumulative_reward(self):
 return self.parent_node.child_cumulative_rewards[self.previous_move]

@node_cumulative_reward.setter
def node_cumulative_reward(self, value):

Learning to Play Go Chapter 15

[340]

 self.parent_node.child_cumulative_rewards[self.previous_move] = value

@property
def mean_reward_perspective(self):
 return self.node_mean_reward * self.board_state.to_play

During the selection step of MCTS, the algorithm chooses the child node with the greatest
action value. This can be easily done by calling np.argmax on the matrix of child action
scores:

def choose_next_child_node(self):
 current = self
 pass_move = GOPARAMETERS.N * GOPARAMETERS.N
 while True:
 current.node_visit_count += 1
 # We stop searching when we reach a new leaf node
 if not current.is_visited:
 break
 if (current.board_state.recent
 and current.board_state.recent[-1].move is None
 and current.child_visit_counts[pass_move] == 0):
 current = current.record_child_node(pass_move)
 continue

 best_move = np.argmax(current.child_action_score)
 current = current.record_child_node(best_move)
 return current

def record_child_node(self, next_coordinate):
 if next_coordinate not in self.children_moves:
 new_board_state = self.board_state.play_move(
 utils.from_flat(next_coordinate))
 self.children_moves[next_coordinate] = MCTreeSearchNode(
 new_board_state, previous_move=next_coordinate,
parent_node=self)
 return self.children_moves[next_coordinate]

Learning to Play Go Chapter 15

[341]

As discussed in our section about AlphaGo Zero, PolicyValueNetwork is used to conduct
simulations in an MCTS iteration. Again, the output of the network are the probabilities
and the predicted value of the node, which we then reflect in the MCTS tree itself. In
particular, the predicted value is propagated throughout the tree via the
back_propagate_result function:

def incorporate_results(self, move_probabilities, result, start_node):
 if self.is_visited:
 self.revert_visits(start_node=start_node)
 return
 self.is_visited = True
 self.original_prior = self.child_prior = move_probabilities
 self.child_cumulative_rewards = np.ones([GOPARAMETERS.N *
GOPARAMETERS.N + 1], dtype=np.float32) * result
 self.back_propagate_result(result, start_node=start_node)

def back_propagate_result(self, result, start_node):
 """
 This function back propagates the result of a match all the way to
where the search started from

 Args:
 result (int): the result of the search (1: black, -1: white won)
 start_node (MCTreeSearchNode): the node to back propagate until
 """
 # Keep track of the cumulative reward in this node
 self.node_cumulative_reward += result

 if self.parent_node is None or self is start_node:
 return

 self.parent_node.back_propagate_result(result, start_node)

Refer to the GitHub repository for a full implementation of our MCTreeSearchNode class
and its functions.

Combining PolicyValueNetwork and MCTS
We combine our PolicyValueNetwork and MCTS implementations
in alphagozero_agent.py. This module implements AlphaGoZeroAgent, which is the
main AlphaGo Zero that conducts MCTS search and inference
using PolicyValueNetwork to play games.

Learning to Play Go Chapter 15

[342]

alphagozero_agent.py
Finally, we implement the agent that acts as the interface between the Go games and the
algorithms. The main class we will implement is called AlphaGoZeroAgent. Again, this
class combines PolicyValueNetwork with our MCTS module, as is done in AlphaGo
Zero, to select moves and simulate games. Note that any missing modules (for
example, go.py, which implements the game of Go itself) can be found in the main GitHub
repository:

import logging
import os
import random
import time

import numpy as np

import go
import utils
from config import GLOBAL_PARAMETER_STORE, GOPARAMETERS
from mcts import MCTreeSearchNode
from utils import make_sgf

logger = logging.getLogger(__name__)

class AlphaGoZeroAgent:

 def __init__(self, network, player_v_player=False,
workers=GLOBAL_PARAMETER_STORE.SIMULTANEOUS_LEAVES):
 self.network = network
 self.player_v_player = player_v_player
 self.workers = workers
 self.mean_reward_store = []
 self.game_description_store = []
 self.child_probability_store = []
 self.root = None
 self.result = 0
 self.logging_buffer = None
 self.conduct_exploration = True
 if self.player_v_player:
 self.conduct_exploration = True
 else:
 self.conduct_exploration = False

Learning to Play Go Chapter 15

[343]

We start a Go game by initializing our agent and the game itself. This is done via
the initialize_game method, which initializes MCTreeSearchNode and buffers that
keep track of move probabilities and action values outputted by the network:

def initialize_game(self, board_state=None):
 if board_state is None:
 board_state = go.BoardState()
 self.root = MCTreeSearchNode(board_state)
 self.result = 0
 self.logging_buffer = None
 self.game_description_store = []
 self.child_probability_store = []
 self.mean_reward_store = []

In each turn, our agent conducts MCTS and picks a move using the select_move function.
Notice that we allow for some exploration in the early stages of the game by selecting a
random node.

The play_move(coordinates) method takes in a coordinate returned by select_move
and updates the MCTS tree and board states:

def play_move(self, coordinates):
 if not self.player_v_player:
self.child_probability_store.append(self.root.get_children_as_probability_d
istributions())
 self.mean_reward_store.append(self.root.node_mean_reward)
 self.game_description_store.append(self.root.describe())
 self.root = self.root.record_child_node(utils.to_flat(coordinates))
 self.board_state = self.root.board_state
 del self.root.parent_node.children_moves
 return True

def select_move(self):
 # If we have conducted enough moves and this is single player mode, we
turn off exploration
 if self.root.board_state.n > GLOBAL_PARAMETER_STORE.TEMPERATURE_CUTOFF
and not self.player_v_player:
 self.conduct_exploration = False

 if self.conduct_exploration:
 child_visits_cum_sum = self.root.child_visit_counts.cumsum()
 child_visits_cum_sum /= child_visits_cum_sum[-1]
 coorindate = child_visits_cum_sum.searchsorted(random.random())
 else:
 coorindate = np.argmax(self.root.child_visit_counts)

 return utils.from_flat(coorindate)

Learning to Play Go Chapter 15

[344]

These functions are encapsulated in the search_tree method, which conducts an iteration
of MCTS using the network to select the next move:

def search_tree(self):
 child_node_store = []
 iteration_count = 0
 while len(child_node_store) < self.workers and iteration_count <
self.workers * 2:
 iteration_count += 1
 child_node = self.root.choose_next_child_node()
 if child_node.is_done():
 result = 1 if child_node.board_state.score() > 0 else -1
 child_node.back_propagate_result(result, start_node=self.root)
 continue
 child_node.propagate_loss(start_node=self.root)
 child_node_store.append(child_node)
 if len(child_node_store) > 0:
 move_probs, values = self.network.predict_on_multiple_board_states(
 [child_node.board_state for child_node in child_node_store])
 for child_node, move_prob, result in zip(child_node_store,
move_probs, values):
 child_node.revert_loss(start_node=self.root)
 child_node.incorporate_results(move_prob, result,
start_node=self.root)

Notice that once we have leaf nodes (where we can no longer select a node based on visit
count), we use
the PolicyValueNetwork.predict_on_multiple_board_states(board_states)
function to output the next move probabilities and value of each leaf node.
This AlphaGoZeroAgent is then used for either playing against another network or against
itself for self-play. We implement separate functions for each. For play_match, we first
start by initializing an agent each for black and white pieces:

def play_match(black_net, white_net, games, readouts, sgf_dir):

 # Create the players for the game
 black = AlphaGoZeroAgent(black_net, player_v_player=True,
workers=GLOBAL_PARAMETER_STORE.SIMULTANEOUS_LEAVES)
 white = AlphaGoZeroAgent(white_net, player_v_player=True,
workers=GLOBAL_PARAMETER_STORE.SIMULTANEOUS_LEAVES)

 black_name = os.path.basename(black_net.model_path)
 white_name = os.path.basename(white_net.model_path)

Learning to Play Go Chapter 15

[345]

During the game, we keep track of the number of moves made, which also informs us
which agent's turn it is. During each agent's turn, we use MCTS and the network to choose
the next move:

for game_num in range(games):
 # Keep track of the number of moves made in the game
 num_moves = 0

 black.initialize_game()
 white.initialize_game()

 while True:
 start = time.time()
 active = white if num_moves % 2 else black
 inactive = black if num_moves % 2 else white

 current_readouts = active.root.node_visit_count
 while active.root.node_visit_count < current_readouts + readouts:
 active.search_tree()

Once the tree search is done, we see whether the agent has resigned or the game has ended
by other means. If so, we write the results and end the game itself:

logger.info(active.root.board_state)

Check whether a player should resign
if active.should_resign():
 active.set_result(-1 * active.root.board_state.to_play,
was_resign=True)
 inactive.set_result(active.root.board_state.to_play, was_resign=True)

if active.is_done():
 sgf_file_path = "{}-{}-vs-{}-{}.sgf".format(int(time.time()),
white_name, black_name, game_num)
 with open(os.path.join(sgf_dir, sgf_file_path), 'w') as fp:
 game_as_sgf_string = make_sgf(active.board_state.recent,
active.logging_buffer,
 black_name=black_name,
 white_name=white_name)
 fp.write(game_as_sgf_string)
 print("Game Over", game_num, active.logging_buffer)
 break

move = active.select_move()
active.play_move(move)
inactive.play_move(move)

Learning to Play Go Chapter 15

[346]

The make_sgf method writes the outcome of the game in a format that is commonly used
in other Go AIs and computer programs. In other words, the output of this module are
compatible with other Go software! Although we won't delve into the technicalities, this
would help you create a Go playing bot that can play other agents and even human players.

SGF stands for Smart Game Format, and is a popular way of storing the
results of board games such as Go. You can find more information
here: https://senseis.xmp.net/?SmartGameFormat.

The play_against_self() is used during the self-play simulations of training,
while play_match() is used to evaluate the latest model against an earlier version of the
model. Again, for a full implementation of the module, please refer to the codebase.

Putting everything together
Now that we have implemented the two main components of AlphaGo
Zero—the PolicyValueNetwork and the MCTS algorithm—we can build the controller
that handles training. At the very beginning of the training procedure, we initialize a model
with random weights. Next, we generate 100 self-play games. Five percent of those games
and their results are held out for validation. The rest are kept for training the network.
After the first initialization and self-play iteration, we essentially loop through the
following steps:

Generate self-play data1.
Collate self-play data to create TFRecords2.
Train network using collated self-play data3.
Validate on holdout dataset4.

After every step 3, the resulting model is stored in a directory as the latest version. The
training procedure and logic are handled by controller.py.

controller.py
First, we start with some import statements and helper functions that help us check
directory paths and find the latest model version:

import argparse
import logging
import os
import random

https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat
https://senseis.xmp.net/?SmartGameFormat

Learning to Play Go Chapter 15

[347]

import socket
import sys
import time

import argh
import tensorflow as tf
from tensorflow import gfile
from tqdm import tqdm

import alphagozero_agent
import network
import preprocessing
from config import GLOBAL_PARAMETER_STORE
from constants import PATHS
from alphagozero_agent import play_match
from network import PolicyValueNetwork
from utils import logged_timer as timer
from utils import print_flags, generate, detect_model_name,
detect_model_version

logging.basicConfig(
 level=logging.DEBUG,
 handlers=[logging.StreamHandler(sys.stdout)],
 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
)

logger = logging.getLogger(__name__)

def get_models():
 """
 Get all model versions
 """
 all_models = gfile.Glob(os.path.join(PATHS.MODELS_DIR, '*.meta'))
 model_filenames = [os.path.basename(m) for m in all_models]
 model_versionbers_names = sorted([
 (detect_model_version(m), detect_model_name(m))
 for m in model_filenames])
 return model_versionbers_names

def get_latest_model():
 """
 Get the latest model

 Returns:
 Tuple of <int, str>, or <model_version, model_name>
 """
 return get_models()[-1]

Learning to Play Go Chapter 15

[348]

The first step of every training run is to initialize a random model. Note that we store
model definitions and weights in the PATHS.MODELS_DIR directory, while checkpoint
results outputted by the estimator object are stored in PATHS.ESTIMATOR_WORKING_DIR:

def initialize_random_model():
 bootstrap_name = generate(0)
 bootstrap_model_path = os.path.join(PATHS.MODELS_DIR, bootstrap_name)
 logger.info("Bootstrapping with working dir {}\n Model 0 exported to
{}".format(
 PATHS.ESTIMATOR_WORKING_DIR, bootstrap_model_path))
 maybe_create_directory(PATHS.ESTIMATOR_WORKING_DIR)
 maybe_create_directory(os.path.dirname(bootstrap_model_path))
 network.initialize_random_model(PATHS.ESTIMATOR_WORKING_DIR)
 network.export_latest_checkpoint_model(PATHS.ESTIMATOR_WORKING_DIR,
bootstrap_model_path)

We next implement the function for executing self-play simulations. As mentioned earlier,
the output of a self-play consist of each board state and the associated moves and game
outcomes produced by the MCTS algorithm. Most output are stored
in PATHS.SELFPLAY_DIR, while some are stored in PATHS.HOLDOUT_DIR for validation.
Self-play involves initializing one AlphaGoZeroAgent and having it play against itself.
This is where we use the play_against_self function that we implemented
in alphagozero_agent.py. In our implementation, we conduct self-play games according
to the GLOBAL_PARAMETER_STORE.NUM_SELFPLAY_GAMES parameter specified. More self-
play games allow our neural network to learn from more experience, but do bear in mind
that the training time increases accordingly:

def selfplay():
 _, model_name = get_latest_model()
 try:
 games = gfile.Glob(os.path.join(PATHS.SELFPLAY_DIR, model_name,
'*.zz'))
 if len(games) > GLOBAL_PARAMETER_STORE.MAX_GAMES_PER_GENERATION:
 logger.info("{} has enough games ({})".format(model_name,
len(games)))
 time.sleep(600)
 sys.exit(1)
 except:
 pass

 for game_idx in range(GLOBAL_PARAMETER_STORE.NUM_SELFPLAY_GAMES):
 logger.info('==')
 logger.info("Playing game {} with model {}".format(game_idx,
model_name))
 logger.info('==')
 model_save_path = os.path.join(PATHS.MODELS_DIR, model_name)

Learning to Play Go Chapter 15

[349]

 game_output_dir = os.path.join(PATHS.SELFPLAY_DIR, model_name)
 game_holdout_dir = os.path.join(PATHS.HOLDOUT_DIR, model_name)
 sgf_dir = os.path.join(PATHS.SGF_DIR, model_name)

 clean_sgf = os.path.join(sgf_dir, 'clean')
 full_sgf = os.path.join(sgf_dir, 'full')
 os.makedirs(clean_sgf, exist_ok=True)
 os.makedirs(full_sgf, exist_ok=True)
 os.makedirs(game_output_dir, exist_ok=True)
 os.makedirs(game_holdout_dir, exist_ok=True)

During self-play, we instantiate an agent with weights of a previously-generated model and
make it play against itself for a number of games defined
by GLOBAL_PARAMETER_STORE.NUM_SELFPLAY_GAMES:

with timer("Loading weights from %s ... " % model_save_path):
 network = PolicyValueNetwork(model_save_path)

with timer("Playing game"):
 agent = alphagozero_agent.play_against_self(network,
GLOBAL_PARAMETER_STORE.SELFPLAY_READOUTS)

After the agent plays against itself, we store the moves it has generated as game data,
which we use to train our policy and value networks:

output_name = '{}-{}'.format(int(time.time()), socket.gethostname())
game_play = agent.extract_data()
with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)),
'w') as f:
 f.write(agent.to_sgf(use_comments=False))
with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w')
as f:
 f.write(agent.to_sgf())

tf_examples = preprocessing.create_dataset_from_selfplay(game_play)

We reserve 5% of games played for validation
holdout = random.random() < GLOBAL_PARAMETER_STORE.HOLDOUT
if holdout:
 to_save_dir = game_holdout_dir
else:
 to_save_dir = game_output_dir
tf_record_path = os.path.join(to_save_dir,
"{}.tfrecord.zz".format(output_name))

preprocessing.write_tf_examples(tf_record_path, tf_examples)

Notice that we reserve a percentage of the games played as the validation set.

Learning to Play Go Chapter 15

[350]

After generating self-play data, we expect roughly five percent of the self-play games to be
in the holdout directory, to be used in validation. The majority of self-play data is used to
train the neural network. We add another step, called aggregate, which takes the latest
model version and its self-play data to construct TFRecords with the format that our
neural network specifies. This is where we use the functions we implemented
in preprocessing.py:

def aggregate():
 logger.info("Gathering game results")

 os.makedirs(PATHS.TRAINING_CHUNK_DIR, exist_ok=True)
 os.makedirs(PATHS.SELFPLAY_DIR, exist_ok=True)
 models = [model_dir.strip('/')
 for model_dir in
sorted(gfile.ListDirectory(PATHS.SELFPLAY_DIR))[-50:]]

 with timer("Finding existing tfrecords..."):
 model_gamedata = {
 model: gfile.Glob(
 os.path.join(PATHS.SELFPLAY_DIR, model, '*.zz'))
 for model in models
 }
 logger.info("Found %d models" % len(models))
 for model_name, record_files in sorted(model_gamedata.items()):
 logger.info(" %s: %s files" % (model_name, len(record_files)))

 meta_file = os.path.join(PATHS.TRAINING_CHUNK_DIR, 'meta.txt')
 try:
 with gfile.GFile(meta_file, 'r') as f:
 already_processed = set(f.read().split())
 except tf.errors.NotFoundError:
 already_processed = set()

 num_already_processed = len(already_processed)

 for model_name, record_files in sorted(model_gamedata.items()):
 if set(record_files) <= already_processed:
 continue
 logger.info("Gathering files for %s:" % model_name)
 for i, example_batch in enumerate(
tqdm(preprocessing.shuffle_tf_examples(GLOBAL_PARAMETER_STORE.EXAMPLES_PER_
RECORD, record_files))):
 output_record = os.path.join(PATHS.TRAINING_CHUNK_DIR,
 '{}-
{}.tfrecord.zz'.format(model_name, str(i)))
 preprocessing.write_tf_examples(
 output_record, example_batch, serialize=False)

Learning to Play Go Chapter 15

[351]

 already_processed.update(record_files)

 logger.info("Processed %s new files" %
 (len(already_processed) - num_already_processed))
 with gfile.GFile(meta_file, 'w') as f:
 f.write('\n'.join(sorted(already_processed)))

After we generate the training data, we train a new version of the neural network. We
search for the latest version of the model, load an estimator using the weights of the latest
version, and execute another iteration of training:

def train():
 model_version, model_name = get_latest_model()
 logger.info("Training on gathered game data, initializing from
{}".format(model_name))
 new_model_name = generate(model_version + 1)
 logger.info("New model will be {}".format(new_model_name))
 save_file = os.path.join(PATHS.MODELS_DIR, new_model_name)

 try:
 logger.info("Getting tf_records")
 tf_records =
sorted(gfile.Glob(os.path.join(PATHS.TRAINING_CHUNK_DIR, '*.tfrecord.zz')))
 tf_records = tf_records[
 -1 * (GLOBAL_PARAMETER_STORE.WINDOW_SIZE //
GLOBAL_PARAMETER_STORE.EXAMPLES_PER_RECORD):]

 print("Training from:", tf_records[0], "to", tf_records[-1])

 with timer("Training"):
 network.train(PATHS.ESTIMATOR_WORKING_DIR, tf_records,
model_version+1)
network.export_latest_checkpoint_model(PATHS.ESTIMATOR_WORKING_DIR,
save_file)

 except:
 logger.info("Got an error training")
 logging.exception("Train error")

Finally, after every training iteration, we would like to validate the model with the
holdout dataset. When enough data is available, we take the holdout data from the last
five versions:

def validate(model_version=None, validate_name=None):
 if model_version is None:
 model_version, model_name = get_latest_model()
 else:
 model_version = int(model_version)

Learning to Play Go Chapter 15

[352]

 model_name = get_model(model_version)

 models = list(
 filter(lambda num_name: num_name[0] < (model_version - 1),
get_models()))

 if len(models) == 0:
 logger.info('Not enough models, including model N for validation')
 models = list(
 filter(lambda num_name: num_name[0] <= model_version,
get_models()))
 else:
 logger.info('Validating using data from following models:
{}'.format(models))

 tf_record_dirs = [os.path.join(PATHS.HOLDOUT_DIR, pair[1])
 for pair in models[-5:]]

 working_dir = PATHS.ESTIMATOR_WORKING_DIR
 checkpoint_name = os.path.join(PATHS.MODELS_DIR, model_name)

 tf_records = []
 with timer("Building lists of holdout files"):
 for record_dir in tf_record_dirs:
 tf_records.extend(gfile.Glob(os.path.join(record_dir, '*.zz')))

 with timer("Validating from {} to
{}".format(os.path.basename(tf_records[0]),
os.path.basename(tf_records[-1]))):
 network.validate(working_dir, tf_records,
checkpoint_path=checkpoint_name, name=validate_name)

Lastly, we implement the evaluate function, which has one model play multiple games
against another:

def evaluate(black_model, white_model):
 os.makedirs(PATHS.SGF_DIR, exist_ok=True)

 with timer("Loading weights"):
 black_net = network.PolicyValueNetwork(black_model)
 white_net = network.PolicyValueNetwork(white_model)

 with timer("Playing {}
games".format(GLOBAL_PARAMETER_STORE.EVALUATION_GAMES)):
 play_match(black_net, white_net,
GLOBAL_PARAMETER_STORE.EVALUATION_GAMES,
 GLOBAL_PARAMETER_STORE.EVALUATION_READOUTS,
PATHS.SGF_DIR)

Learning to Play Go Chapter 15

[353]

The evaluate method takes two parameters, black_model and white_model, where
each argument refers to the path of the agent used to play a game. We use black_model
and white_model to instantiate two PolicyValueNetworks. Typically, we want to
evaluate the latest model version, which would play as either black or white.

train.py
Finally, train.py is where all the functions we implemented in the controller are called
and coordinated. More specifically, we execute each step as subprocess:

import subprocess
import sys
from utils import timer

import os

from constants import PATHS

import logging

logger = logging.getLogger(__name__)

def main():

 if not os.path.exists(PATHS.SELFPLAY_DIR):
 with timer("Initialize"):
 logger.info('==')
 logger.info("============ Initializing...==============")
 logger.info('==')
 res = subprocess.call("python controller.py initialize-random-
model", shell=True)

 with timer('Initial Selfplay'):
 logger.info('=======================================')
 logger.info('============ Selplaying...=============')
 logger.info('=======================================')
 subprocess.call('python controller.py selfplay', shell=True)

Assuming that no model has been trained yet, we initialize a model with random weights
and make it play against itself to generate some data for our policy and value networks.
After rewards, we repeat the following:

Aggregate data self-play data1.
Train networks2.

Learning to Play Go Chapter 15

[354]

Make the agent play against itself3.
Validate on validation data4.

This is implemented as follows:

while True:
 with timer("Aggregate"):
 logger.info('===')
 logger.info("============ Aggregating...==============")
 logger.info('===')
 res = subprocess.call("python controller.py aggregate", shell=True)
 if res != 0:
 logger.info("Failed to gather")
 sys.exit(1)

 with timer("Train"):
 logger.info('=======================================')
 logger.info("============ Training...===============")
 logger.info('=======================================')
 subprocess.call("python controller.py train", shell=True)

 with timer('Selfplay'):
 logger.info('=======================================')
 logger.info('============ Selplaying...=============')
 logger.info('=======================================')
 subprocess.call('python controller.py selfplay', shell=True)

 with timer("Validate"):
 logger.info('=======================================')
 logger.info("============ Validating...=============")
 logger.info('=======================================')
 subprocess.call("python controller.py validate", shell=True)

Finally, since this is the main module, we add the following at the end of the file:

if __name__ == '__main__':
 main()

And at long last, we're done!

To run the training of AlphaGo Zero, all you need to do is call this command:
$ python train.py

Learning to Play Go Chapter 15

[355]

If everything has been implemented correctly, you should start to see the model train.
However, the reader is to be warned that training will take a long, long time. To put things
into perspective, DeepMind used 64 GPU workers and 19 CPU servers to train AlphaGo
Zero for 40 days. If you wish to see your model attain a high level of proficiency, expect to
wait a long time.

Note that training AlphaGo Zero takes a very long time. Do not expect the
model to reach professional-level proficiency any time soon!

You should be able to see output that looks such as the following:

2018-09-14 03:41:27,286 utils INFO Playing game: 342.685 seconds
2018-09-14 03:41:27,332 __main__ INFO
==
2018-09-14 03:41:27,332 __main__ INFO Playing game 9 with model 000010-
pretty-tetra
2018-09-14 03:41:27,332 __main__ INFO
==
INFO:tensorflow:Restoring parameters from models/000010-pretty-tetra
2018-09-14 03:41:32,352 tensorflow INFO Restoring parameters from
models/000010-pretty-tetra
2018-09-14 03:41:32,624 utils INFO Loading weights from models/000010-
pretty-tetra ... : 5.291 seconds

You will also be able to see the board state as the agent plays against itself or against other
agents:

 A B C D E F G H J
 9 X 9
 8 . . . X . . O . . 8
 7 X O O . . 7
 6 O . X X X<. . . . 6
 5 X . O O . . O X . 5
 4 . . X X . . . O . 4
 3 . . X . X . O O . 3
 2 . . . O X 2
 1 1
 A B C D E F G H J
Move: 25. Captures X: 0 O: 0
 -5.5
 A B C D E F G H J
 9 X 9
 8 . . . X . . O . . 8
 7 X O O . . 7
 6 O . X X X 6

Learning to Play Go Chapter 15

[356]

 5 X . O O . . O X . 5
 4 . . X X . . . O . 4
 3 . . X . X . O O . 3
 2 . . . O X 2
 1 1
 A B C D E F G H J
Move: 26. Captures X: 0 O: 0

If you want to play one model against another, you can run the following command
(assuming that the models are stored in models/):

python controller.py evaluate models/{model_name_1} models/{model_name_2}

Summary
In this chapter, we studied reinforcement learning algorithms for one of the most complex
and difficult games in the world, Go. In particular, we explored Monte Carlo tree search, a
popular algorithm that learns the best moves over time. In AlphaGo, we observed how
MCTS can be combined with deep neural networks to make learning more efficient and
powerful. Then we investigated how AlphaGo Zero revolutionized Go agents by learning
solely and entirely from self-play experience while outperforming all existing Go software
and players. We then implemented this algorithm from scratch.

We also implemented AlphaGo Zero, which is the lighter version of AlphaGo since it does
not depend on human game data. However, as noted, AlphaGo Zero requires enormous
amounts of computational resources. Moreover, as you may have noticed, AlphaGo Zero
depends on a myriad of hyperparameters, all of which require fine-tuning. In short,
training AlphaGo Zero fully is a prohibitive task. We don't expect the reader to implement
a state-of-the-art Go agent; rather, we hope that through this chapter, the reader has a better
understanding of how Go playing deep reinforcement learning algorithms work. A firmer
comprehension of these techniques and algorithms is already a valuable takeaway and
outcome from this chapter. But of course, we encourage the reader to continue their
exploration on this topic and build an even better version of AlphaGo Zero.

Learning to Play Go Chapter 15

[357]

For more in-depth information and resources on the topics we covered in this chapter,
please refer to the following links:

AlphaGo home page: https://deepmind.com/research/alphago/

AlphaGo paper: https://storage.googleapis.com/deepmind-media/alphago/
AlphaGoNaturePaper.pdf

AlphaGo Zero paper: https://www.nature.com/articles/nature24270

AlphaGo Zero blog post by DeepMind: https://deepmind.com/blog/alphago-
zero-learning-scratch/

A survey of MCTS methods: http://mcts.ai/pubs/mcts-survey-master.pdf

Now that computers have surpassed human performance in board games, one may ask,
What's next? What are the implications of these results? There remains much to be
done; Go, which has complete information and is played turn by turn, is still considered
simple compared to many real-life situations. One can imagine that the problem of self-
driving cars poses a more difficult challenge given the lack of complete information and
a larger number of variables. Nevertheless, AlphaGo and AlphaGo Zero have provided a
crucial step toward achieving these tasks, and one can surely be excited about further
developments in this field.

References
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,1.
... and Dieleman, S. (2016). Mastering the game of Go with deep neural networks and
tree search. Nature, 529(7587), 484.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ...2.
and Chen, Y. (2017). Mastering the game of Go without human
knowledge. Nature, 550(7676), 354.
Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,3.
Rohlfshagen, P., ... and Colton, S. (2012). A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1),
1-43.

https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://deepmind.com/research/alphago/%E2%80%8B
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf
http://mcts.ai/pubs/mcts-survey-master.pdf

16
Creating a Chatbot

Dialogue agents and chatbots have been on the rise in recent years. Many businesses have
resorted to chatbots to answer customer inquiries, and this has been largely successful.
Chatbots have been growing quickly, at 5.6x in the last year (https://chatbotsmagazine.
com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b). Chatbots can
help organizations to communicate and interact with customers without any human
intervention, at a very minimal cost. Over 51% of customers have stated that they want
businesses to be available 24/7, and they expect replies in less than one hour. For businesses
to achieve this kind of success in an affordable manner, especially with a large customer
base, they must resort to chatbots.

The background problem
Many chatbots are created with regular machine learning natural language processing
algorithms, and these focus on immediate responses. A new concept is to create chatbots
with the use of deep reinforcement learning. This would mean that the future implications
of our immediate responses would be considered to maintain coherence.

In this chapter, you will learn how to apply deep reinforcement learning to natural
language processing. Our reward function will be a future-looking function, and you will
learn how to think probabilistically through the creation of this function.

Dataset
The dataset that we will use mainly consists of conversations from selected movies. This
dataset will help to stimulate and understand conversational methods in the chatbot. Also,
there are movie lines, which are essentially the same as the movie conversations, albeit
shorter exchanges between people. Other data sets that will be used include some
containing movie titles, movie characters, and raw scripts.

https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b

Creating a Chatbot Chapter 16

[359]

Step-by-step guide
Our solution will use modeling and will focus on the future direction of a dialogue agent,
so as to generate coherent and interesting dialogue. The model will simulate the dialogue
between two virtual agents, with the use of policy gradient methods. These methods are
designed to reward the sequences of interaction that display three important properties of
conversation: informativeness (non-repeating turns), high coherence, and simplicity in
answering (this is related to the forward-looking function). In our solution, an action will be
defined as the dialogue or communication utterance that the chatbot generates. Also, a state
will be defined as the two previous interaction turns. In order to achieve all of this, we will
use the scripts in the following sections.

Data parser
The data parser script is designed to help with the cleaning and preprocessing of our
datasets. There are a number of dependencies in this script, such as pickle, codecs, re,
OS, time, and numpy. This script contains three functions. The first function helps to filter
words, by preprocessing word counts and creating vocabulary based on word count
thresholds. The second function helps to parse all words into this script, and the third
function helps to extract only the defined vocabulary from the data:

import pickle
import codecs
import re
import os
import time
import numpy as np

The following module cleans and preprocesses the text in the training dataset:

def preProBuildWordVocab(word_count_threshold=5,
all_words_path='data/all_words.txt'):
 # borrowed this function from NeuralTalk

 if not os.path.exists(all_words_path):
 parse_all_words(all_words_path)

 corpus = open(all_words_path, 'r').read().split('\n')[:-1]
 captions = np.asarray(corpus, dtype=np.object)

 captions = map(lambda x: x.replace('.', ''), captions)
 captions = map(lambda x: x.replace(',', ''), captions)
 captions = map(lambda x: x.replace('"', ''), captions)
 captions = map(lambda x: x.replace('\n', ''), captions)

Creating a Chatbot Chapter 16

[360]

 captions = map(lambda x: x.replace('?', ''), captions)
 captions = map(lambda x: x.replace('!', ''), captions)
 captions = map(lambda x: x.replace('\\', ''), captions)
 captions = map(lambda x: x.replace('/', ''), captions)

Next, iterate through the captions and create the vocabulary.

 print('preprocessing word counts and creating vocab based on word count
threshold %d' % (word_count_threshold))
 word_counts = {}
 nsents = 0
 for sent in captions:
 nsents += 1
 for w in sent.lower().split(' '):
 word_counts[w] = word_counts.get(w, 0) + 1
 vocab = [w for w in word_counts if word_counts[w] >=
word_count_threshold]
 print('filtered words from %d to %d' % (len(word_counts), len(vocab)))

 ixtoword = {}
 ixtoword[0] = '<pad>'
 ixtoword[1] = '<bos>'
 ixtoword[2] = '<eos>'
 ixtoword[3] = '<unk>'

 wordtoix = {}
 wordtoix['<pad>'] = 0
 wordtoix['<bos>'] = 1
 wordtoix['<eos>'] = 2
 wordtoix['<unk>'] = 3

 for idx, w in enumerate(vocab):
 wordtoix[w] = idx+4
 ixtoword[idx+4] = w

 word_counts['<pad>'] = nsents
 word_counts['<bos>'] = nsents
 word_counts['<eos>'] = nsents
 word_counts['<unk>'] = nsents

 bias_init_vector = np.array([1.0 * word_counts[ixtoword[i]] for i in
ixtoword])
 bias_init_vector /= np.sum(bias_init_vector) # normalize to frequencies
 bias_init_vector = np.log(bias_init_vector)
 bias_init_vector -= np.max(bias_init_vector) # shift to nice numeric
range

 return wordtoix, ixtoword, bias_init_vector

Creating a Chatbot Chapter 16

[361]

Next, parse all the words from the movie lines.

def parse_all_words(all_words_path):
 raw_movie_lines = open('data/movie_lines.txt', 'r', encoding='utf-8',
errors='ignore').read().split('\n')[:-1]

 with codecs.open(all_words_path, "w", encoding='utf-8',
errors='ignore') as f:
 for line in raw_movie_lines:
 line = line.split(' +++$+++ ')
 utterance = line[-1]
 f.write(utterance + '\n')

Extract only the vocabulary part of the data, as follows:

def refine(data):
 words = re.findall("[a-zA-Z'-]+", data)
 words = ["".join(word.split("'")) for word in words]
 # words = ["".join(word.split("-")) for word in words]
 data = ' '.join(words)
 return data

Next, the utterance dictionary is created and stored.

if __name__ == '__main__':
 parse_all_words('data/all_words.txt')

 raw_movie_lines = open('data/movie_lines.txt', 'r', encoding='utf-8',
errors='ignore').read().split('\n')[:-1]
 utterance_dict = {}
 with codecs.open('data/tokenized_all_words.txt', "w", encoding='utf-8',
errors='ignore') as f:
 for line in raw_movie_lines:
 line = line.split(' +++$+++ ')
 line_ID = line[0]
 utterance = line[-1]
 utterance_dict[line_ID] = utterance
 utterance = " ".join([refine(w) for w in
utterance.lower().split()])
 f.write(utterance + '\n')
 pickle.dump(utterance_dict, open('data/utterance_dict', 'wb'), True)

The data is parsed and can be utilized in further steps.

Creating a Chatbot Chapter 16

[362]

Data reader
The data reader script helps to generate trainable batches from the preprocessed training
text from the data parser script. Let's start by importing the required methods:

import pickle
import random

This helper module helps generate trainable batches from the preprocessed training text.

class Data_Reader:
 def __init__(self, cur_train_index=0, load_list=False):
 self.training_data =
pickle.load(open('data/conversations_lenmax22_formersents2_with_former',
'rb'))
 self.data_size = len(self.training_data)
 if load_list:
 self.shuffle_list = pickle.load(open('data/shuffle_index_list',
'rb'))
 else:
 self.shuffle_list = self.shuffle_index()
 self.train_index = cur_train_index

The following code gets the batch number from the data:

 def get_batch_num(self, batch_size):
 return self.data_size // batch_size

The following code shuffles the index from the data:

 def shuffle_index(self):
 shuffle_index_list = random.sample(range(self.data_size),
self.data_size)
 pickle.dump(shuffle_index_list, open('data/shuffle_index_list',
'wb'), True)
 return shuffle_index_list

The following code generates the batch indices, based on the batch number that was
obtained earlier:

 def generate_batch_index(self, batch_size):
 if self.train_index + batch_size > self.data_size:
 batch_index =
self.shuffle_list[self.train_index:self.data_size]
 self.shuffle_list = self.shuffle_index()
 remain_size = batch_size - (self.data_size - self.train_index)
 batch_index += self.shuffle_list[:remain_size]
 self.train_index = remain_size

Creating a Chatbot Chapter 16

[363]

 else:
 batch_index =
self.shuffle_list[self.train_index:self.train_index+batch_size]
 self.train_index += batch_size

 return batch_index

The following code generates the training batch:

 def generate_training_batch(self, batch_size):
 batch_index = self.generate_batch_index(batch_size)
 batch_X = [self.training_data[i][0] for i in batch_index] #
batch_size of conv_a
 batch_Y = [self.training_data[i][1] for i in batch_index] #
batch_size of conv_b

 return batch_X, batch_Y

The following function generates training batch with the former.

 def generate_training_batch_with_former(self, batch_size):
 batch_index = self.generate_batch_index(batch_size)
 batch_X = [self.training_data[i][0] for i in batch_index] #
batch_size of conv_a
 batch_Y = [self.training_data[i][1] for i in batch_index] #
batch_size of conv_b
 former = [self.training_data[i][2] for i in batch_index] #
batch_size of former utterance

 return batch_X, batch_Y, former

The following code generates the testing batch:

 def generate_testing_batch(self, batch_size):
 batch_index = self.generate_batch_index(batch_size)
 batch_X = [self.training_data[i][0] for i in batch_index] #
batch_size of conv_a

 return batch_X

This concludes the data reading part.

Creating a Chatbot Chapter 16

[364]

Helper methods
This script consists of a Seq2seq dialogue generator model, which is used for the reverse
model of the backward entropy loss. This will determine the semantic coherence reward for
the policy gradients dialogue. Essentially, this script will help us to represent our future
reward function. The script will achieve this via the following actions:

Encoding
Decoding
Generating builds

All of the preceding actions are based on long short-term memory (LSTM) units.

The feature extractor script helps with the extraction of features and characteristics from the
data, in order to help us train it better. Let us start by importing the required modules.

import tensorflow as tf
import numpy as np
import re

 Next, define the model inputs. If reinforcement learning is set to True, a scalar is computed
based on semantic coherence and ease of answering loss caption.

def model_inputs(embed_dim, reinforcement= False):
 word_vectors = tf.placeholder(tf.float32, [None, None, embed_dim], name
= "word_vectors")
 reward = tf.placeholder(tf.float32, shape = (), name = "rewards")
 caption = tf.placeholder(tf.int32, [None, None], name = "captions")
 caption_mask = tf.placeholder(tf.float32, [None, None], name =
"caption_masks")
 if reinforcement: #Normal training returns only the word_vectors,
caption and caption_mask placeholders,
 #With reinforcement learning, there is an extra placeholder for
rewards
 return word_vectors, caption, caption_mask, reward
 else:
 return word_vectors, caption, caption_mask

Next, define the encoding layers which perform encoding for the sequence to sequence
network. The input sequence is passed into the encoder and returns the output of RNN
output and the state.

def encoding_layer(word_vectors, lstm_size, num_layers, keep_prob,
 vocab_size):
 cells =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.L

Creating a Chatbot Chapter 16

[365]

STMCell(lstm_size), keep_prob) for _ in range(num_layers)])
 outputs, state = tf.nn.dynamic_rnn(cells,
 word_vectors,
 dtype=tf.float32)
 return outputs, state

Next, define the training process for decoder using LSTMS cells with the encoder state
together with the decoder inputs.

def decode_train(enc_state, dec_cell, dec_input,
 target_sequence_length,output_sequence_length,
 output_layer, keep_prob):
 dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell,
#Apply dropout to the LSTM cell
 output_keep_prob=keep_prob)
 helper = tf.contrib.seq2seq.TrainingHelper(dec_input,
#Training helper for decoder
 target_sequence_length)
 decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,
 helper,
 enc_state,
 output_layer)

 # unrolling the decoder layer
 outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
 impute_finished=True,
maximum_iterations=output_sequence_length)
 return outputs

Next, define an inference decoder similar to the one used for the training. Makes use of a
greedy helper which feeds the last output of the decoder as the next decoder input. The
output returned contains the training logits and the sample id.

def decode_generate(encoder_state, dec_cell, dec_embeddings,
 target_sequence_length,output_sequence_length,
 vocab_size, output_layer, batch_size, keep_prob):
 dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell,
 output_keep_prob=keep_prob)
 helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings,
 tf.fill([batch_size],
1), #Decoder helper for inference
 2)
 decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,
 helper,
 encoder_state,
 output_layer)
 outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
 impute_finished=True,

Creating a Chatbot Chapter 16

[366]

maximum_iterations=output_sequence_length)
 return outputs

Next, create a decoding layer.

def decoding_layer(dec_input, enc_state,
 target_sequence_length,output_sequence_length,
 lstm_size,
 num_layers,n_words,
 batch_size, keep_prob,embedding_size, Train = True):
 target_vocab_size = n_words
 with tf.device("/cpu:0"):
 dec_embeddings =
tf.Variable(tf.random_uniform([target_vocab_size,embedding_size], -0.1,
0.1), name='Wemb')
 dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
 cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(lstm_size)
for _ in range(num_layers)])
 with tf.variable_scope("decode"):
 output_layer = tf.layers.Dense(target_vocab_size)
 if Train:
 with tf.variable_scope("decode"):
 train_output = decode_train(enc_state,
 cells,
 dec_embed_input,
 target_sequence_length,
output_sequence_length,
 output_layer,
 keep_prob)

 with tf.variable_scope("decode", reuse=tf.AUTO_REUSE):
 infer_output = decode_generate(enc_state,
 cells,
 dec_embeddings,
target_sequence_length,
 output_sequence_length,
 target_vocab_size,
 output_layer,
 batch_size,
 keep_prob)
 if Train:
 return train_output, infer_output
 return infer_output

Creating a Chatbot Chapter 16

[367]

Next, create the bos inclusion which appends the index corresponding to <bos> referring to
the beginning of a sentence to the first index of the caption tensor for every batch.

def bos_inclusion(caption,batch_size):

 sliced_target = tf.strided_slice(caption, [0,0], [batch_size, -1],
[1,1])
 concat = tf.concat([tf.fill([batch_size, 1],1), sliced_target],1)
 return concat

Next, define pad sequences which creates an array of size maxlen from every question by
padding with zeros or truncating where necessary.

def pad_sequences(questions, sequence_length =22):
 lengths = [len(x) for x in questions]
 num_samples = len(questions)
 x = np.zeros((num_samples, sequence_length)).astype(int)
 for idx, sequence in enumerate(questions):
 if not len(sequence):
 continue # empty list/array was found
 truncated = sequence[-sequence_length:]

 truncated = np.asarray(truncated, dtype=int)

 x[idx, :len(truncated)] = truncated
 return x

Ignore non-vocabulary parts if the data and take only all alphabets.

def refine(data):
 words = re.findall("[a-zA-Z'-]+", data)
 words = ["".join(word.split("'")) for word in words]
 data = ' '.join(words)
 return data

Next, create batches to be fed into the network from in word vector representation.

def make_batch_input(batch_input, input_sequence_length, embed_dims,
word2vec):
 for i in range(len(batch_input)):
 batch_input[i] = [word2vec[w] if w in word2vec else
np.zeros(embed_dims) for w in batch_input[i]]
 if len(batch_input[i]) >input_sequence_length:
 batch_input[i] = batch_input[i][:input_sequence_length]
 else:
 for _ in range(input_sequence_length - len(batch_input[i])):
 batch_input[i].append(np.zeros(embed_dims))

Creating a Chatbot Chapter 16

[368]

 return np.array(batch_input)

def replace(target,symbols): #Remove symbols from sequence
 for symbol in symbols:
 target = list(map(lambda x: x.replace(symbol,''),target))
 return target
def make_batch_target(batch_target, word_to_index, target_sequence_length):
 target = batch_target
 target = list(map(lambda x: '<bos> ' + x, target))
 symbols = ['.', ',', '"', '\n','?','!','\\','/']
 target = replace(target, symbols)

 for idx, each_cap in enumerate(target):
 word = each_cap.lower().split(' ')
 if len(word) < target_sequence_length:
 target[idx] = target[idx] + ' <eos>' #Append the end of symbol
symbol
 else:
 new_word = ''
 for i in range(target_sequence_length-1):
 new_word = new_word + word[i] + ' '
 target[idx] = new_word + '<eos>'
 target_index = [[word_to_index[word] if word in word_to_index else
word_to_index['<unk>'] for word in
 sequence.lower().split(' ')] for sequence in
target]
 #print(target_index[0])
 caption_matrix = pad_sequences(target_index,target_sequence_length)
 caption_matrix = np.hstack([caption_matrix,
np.zeros([len(caption_matrix), 1])]).astype(int)
 caption_masks = np.zeros((caption_matrix.shape[0],
caption_matrix.shape[1]))
 nonzeros = np.array(list(map(lambda x: (x != 0).sum(),
caption_matrix)))
 #print(nonzeros)
 #print(caption_matrix[1])
 for ind, row in enumerate(caption_masks): #Set the masks as an array of
ones where actual words exist and zeros otherwise
 row[:nonzeros[ind]] = 1
 #print(row)
 print(caption_masks[0])
 print(caption_matrix[0])
 return caption_matrix,caption_masks

def generic_batch(generic_responses, batch_size, word_to_index,
target_sequence_length):
 size = len(generic_responses)
 if size > batch_size:

Creating a Chatbot Chapter 16

[369]

 generic_responses = generic_responses[:batch_size]
 else:
 for j in range(batch_size - size):
 generic_responses.append('')
 return make_batch_Y(generic_responses, word_to_index,
target_sequence_length)

Next, generate sentences from the predicted indices. Replace <unk>, <pad> with the word
with the next highest probability whenever predicted.

def index2sentence(generated_word_index, prob_logit, ixtoword):
 generated_word_index = list(generated_word_index)
 for i in range(len(generated_word_index)):
 if generated_word_index[i] == 3 or generated_word_index[i] == 0:
 sort_prob_logit = sorted(prob_logit[i])
 curindex = np.where(prob_logit[i] == sort_prob_logit[-2])[0][0]
 count = 1
 while curindex <= 3:
 curindex = np.where(prob_logit[i] == sort_prob_logit[(-2)-
count])[0][0]
 count += 1

 generated_word_index[i] = curindex

 generated_words = []
 for ind in generated_word_index:
 generated_words.append(ixtoword[ind])
 generated_sentence = ' '.join(generated_words)
 generated_sentence = generated_sentence.replace('<bos> ', '') #Replace
the beginning of sentence tag
 generated_sentence = generated_sentence.replace('<eos>', '') #Replace
the end of sentence tag
 generated_sentence = generated_sentence.replace('--', '') #Replace
the other symbols predicted
 generated_sentence = generated_sentence.split(' ')
 for i in range(len(generated_sentence)): #Begin sentences with
Upper case
 generated_sentence[i] = generated_sentence[i].strip()
 if len(generated_sentence[i]) > 1:
 generated_sentence[i] = generated_sentence[i][0].upper() +
generated_sentence[i][1:] + '.'
 else:
 generated_sentence[i] = generated_sentence[i].upper()
 generated_sentence = ' '.join(generated_sentence)
 generated_sentence = generated_sentence.replace(' i ', ' I ')
 generated_sentence = generated_sentence.replace("i'm", "I'm")
 generated_sentence = generated_sentence.replace("i'd", "I'd")

Creating a Chatbot Chapter 16

[370]

 return generated_sentence

This concludes all the helper functions.

Chatbot model
The following script contains the policy gradient model, which will be used where it
combines reinforcement learning rewards with the cross-entropy loss. The dependencies
include numpy and tensorflow. Our policy gradient is based on an LSTM encoder-
decoder. We will use a stochastic demonstration of our policy gradient, which will be a
probability distribution of actions over specified states. The script represents all of these,
and specifies the policy gradient loss to be minimized.

Run the output of the first cell through the second cell; the input is concatenated with zeros.
The final state for the responses mostly consists of two components—the latent
representation of the input by the encoder, and the state of the decoder, based on the
selected words. The return includes placeholder tensors and other tensors, such as losses
and training optimization operation. Let's start by importing the required libraries.

import tensorflow as tf
import numpy as np
import helper as h

We will create a chatbot class to create the model.

class Chatbot():
 def __init__(self, embed_dim, vocab_size, lstm_size, batch_size,
input_sequence_length, target_sequence_length, learning_rate =0.0001,
keep_prob = 0.5, num_layers = 1, policy_gradients = False, Training =
True):
 self.embed_dim = embed_dim
 self.lstm_size = lstm_size
 self.batch_size = batch_size
 self.vocab_size = vocab_size
 self.input_sequence_length =
tf.fill([self.batch_size],input_sequence_length+1)
 self.target_sequence_length =
tf.fill([self.batch_size],target_sequence_length+1)
 self.output_sequence_length = target_sequence_length +1
 self.learning_rate = learning_rate
 self.keep_prob = keep_prob
 self.num_layers = num_layers
 self.policy_gradients = policy_gradients
 self.Training = Training

Creating a Chatbot Chapter 16

[371]

Next, create a method that builds the model. If policy gradients are requested, then get the
input accordingly.

 def build_model(self):
 if self.policy_gradients:
 word_vectors, caption, caption_mask, rewards =
h.model_inputs(self.embed_dim, True)
 place_holders = {'word_vectors': word_vectors,
 'caption': caption,
 'caption_mask': caption_mask, "rewards": rewards
 }
 else:
 word_vectors, caption, caption_mask =
h.model_inputs(self.embed_dim)
 place_holders = {'word_vectors': word_vectors,
 'caption': caption,
 'caption_mask': caption_mask}
 enc_output, enc_state = h.encoding_layer(word_vectors,
self.lstm_size, self.num_layers,
 self.keep_prob, self.vocab_size)
 #dec_inp = h.bos_inclusion(caption, self.batch_size)
 dec_inp = caption

Next, get the inference layer.

 if not self.Training:
 print("Test mode")
 inference_out = h.decoding_layer(dec_inp,
enc_state,self.target_sequence_length,
self.output_sequence_length,
 self.lstm_size,
self.num_layers,
 self.vocab_size,
self.batch_size,
 self.keep_prob,
self.embed_dim, False)
 logits = tf.identity(inference_out.rnn_output, name =
"train_logits")
 predictions = tf.identity(inference_out.sample_id, name =
"predictions")
 return place_holders, predictions, logits

Next, get the loss layers.

 train_out, inference_out = h.decoding_layer(dec_inp,
enc_state,self.target_sequence_length,
self.output_sequence_length,
 self.lstm_size,

Creating a Chatbot Chapter 16

[372]

self.num_layers,
 self.vocab_size,
self.batch_size,
 self.keep_prob,
self.embed_dim)
 training_logits = tf.identity(train_out.rnn_output, name =
"train_logits")
 prediction_logits = tf.identity(inference_out.sample_id, name =
"predictions")
 cross_entropy = tf.contrib.seq2seq.sequence_loss(training_logits,
caption, caption_mask)
 losses = {"entropy": cross_entropy}

Depending on the state of the policy gradient, either minimize cross entropy loss or policy
gradient loss.

 if self.policy_gradients:
 pg_loss = tf.contrib.seq2seq.sequence_loss(training_logits,
caption, caption_mask*rewards)
 with tf.variable_scope(tf.get_variable_scope(), reuse=False):
 optimizer =
tf.train.AdamOptimizer(self.learning_rate).minimize(pg_loss)
 losses.update({"pg":pg_loss})
 else:
 with tf.variable_scope(tf.get_variable_scope(), reuse=False):
 optimizer =
tf.train.AdamOptimizer(self.learning_rate).minimize(cross_entropy)
 return optimizer, place_holders,prediction_logits,training_logits,
losses

Now we have all the methods that are required for training.

Training the data
The scripts that were written previously were combined with training the dataset. Let's
start the training by importing all the modules that are developed in the previous sections
as shown here:

from data_reader import Data_Reader
import data_parser
from gensim.models import KeyedVectors
import helper as h
from seq_model import Chatbot
import tensorflow as tf
import numpy as np

Creating a Chatbot Chapter 16

[373]

Next, let's create a set of generic responses observed in the original seq2seq model which
the policy gradients are trained to avoid:

generic_responses = [
 "I don't know what you're talking about.",
 "I don't know.",
 "You don't know.",
 "You know what I mean.",
 "I know what you mean.",
 "You know what I'm saying.",
 "You don't know anything."
]

Next, we will define all the constants that are required for the training. Tha

checkpoint = True
forward_model_path = 'model/forward'
reversed_model_path = 'model/reversed'
rl_model_path = "model/rl"
model_name = 'seq2seq'
word_count_threshold = 20
reversed_word_count_threshold = 6
dim_wordvec = 300
dim_hidden = 1000
input_sequence_length = 22
output_sequence_length = 22
learning_rate = 0.0001
epochs = 1
batch_size = 200
forward_ = "forward"
reverse_ = "reverse"
forward_epochs = 50
reverse_epochs = 50
display_interval = 100

Next, define the training function. Based on the type, either the forward or reverse
sequence to sequence model is loaded. The data is also read in reverse model based on the
model as shown here:

def train(type_, epochs=epochs, checkpoint=False):
 tf.reset_default_graph()
 if type_ == "forward":
 path = "model/forward/seq2seq"
 dr = Data_Reader(reverse=False)
 else:
 dr = Data_Reader(reverse=True)
 path = "model/reverse/seq2seq"

Creating a Chatbot Chapter 16

[374]

Next, create the vocabulary as shown here:

 word_to_index, index_to_word, _ =
data_parser.preProBuildWordVocab(word_count_threshold=word_count_threshold)

The above command print should print the following indicated the vocabulary size that is
filtered.

preprocessing word counts and creating vocab based on word count threshold
20
filtered words from 76029 to 6847

The word_to_index variable is filled with the map of filtered words to an integer as
shown here:

{'': 4,
'deposition': 1769,
'next': 3397,
'dates': 1768,
'chance': 2597,
'slipped': 4340,...

The index_to_word variable is filled with the map of integer to the filtered works which
will work as a reverse lookup.

5: 'tastes',
6: 'shower',
7: 'agent',
8: 'lack',

Next, load the word to vector model from gensim library.

 word_vector =
KeyedVectors.load_word2vec_format('model/word_vector.bin', binary=True)

Next, instantiate and build the model the Chatbot model with all the constants that were
defined. Restore a checkpoint, if present from the previous run or initialize the graph.

 model = Chatbot(dim_wordvec, len(word_to_index), dim_hidden,
batch_size,
 input_sequence_length, output_sequence_length,
learning_rate)
 optimizer, place_holders, predictions, logits, losses =
model.build_model()
 saver = tf.train.Saver()
 sess = tf.InteractiveSession()
 if checkpoint:
 saver.restore(sess, path)

Creating a Chatbot Chapter 16

[375]

 print("checkpoint restored at path: {}".format(path))
 else:
 tf.global_variables_initializer().run()

Next, start the training by iterating through the epochs and start the batches.

 for epoch in range(epochs):
 n_batch = dr.get_batch_num(batch_size=batch_size)
 for batch in range(n_batch):

 batch_input, batch_target =
dr.generate_training_batch(batch_size)

The batch_input has the list of words from the training set. The batch_target has the
list of sentences for the input which will be the target. The list of words is converted to
vector form using the helper functions. Make the feed dictionary for the graph using the
transformed inputs, masks and targets.

 inputs_ = h.make_batch_input(batch_input,
input_sequence_length, dim_wordvec, word_vector)

 targets, masks = h.make_batch_target(batch_target,
word_to_index, output_sequence_length)
 feed_dict = {
 place_holders['word_vectors']: inputs_,
 place_holders['caption']: targets,
 place_holders['caption_mask']: masks
 }

Next, train the model by calling the optimizer by feeding the training data. Log the loss
value at certain intervals to see the progress of the training. Save the model at the end.

 _, loss_val, preds = sess.run([optimizer, losses["entropy"],
predictions],
 feed_dict=feed_dict)

 if batch % display_interval == 0:
 print(preds.shape)
 print("Epoch: {}, batch: {}, loss: {}".format(epoch, batch,
loss_val))
print("===")

 saver.save(sess, path)

 print("Model saved at {}".format(path))
 print("Training done")

 sess.close()

Creating a Chatbot Chapter 16

[376]

The output should appear as shown here.

(200, 23)
Epoch: 0, batch: 0, loss: 8.831538200378418
===

The model is trained for both forward and reverse and the corresponding models are
stored. In the next function, the models are restored and trained again to create the chatbot.

def pg_train(epochs=epochs, checkpoint=False):
 tf.reset_default_graph()
 path = "model/reinforcement/seq2seq"
 word_to_index, index_to_word, _ =
data_parser.preProBuildWordVocab(word_count_threshold=word_count_threshold)
 word_vector =
KeyedVectors.load_word2vec_format('model/word_vector.bin', binary=True)
 generic_caption, generic_mask = h.generic_batch(generic_responses,
batch_size, word_to_index,
 output_sequence_length)

 dr = Data_Reader()
 forward_graph = tf.Graph()
 reverse_graph = tf.Graph()
 default_graph = tf.get_default_graph()

Two graphs are created to load the trained models.

 with forward_graph.as_default():
 pg_model = Chatbot(dim_wordvec, len(word_to_index), dim_hidden,
batch_size,
 input_sequence_length, output_sequence_length,
learning_rate, policy_gradients=True)
 optimizer, place_holders, predictions, logits, losses =
pg_model.build_model()

 sess = tf.InteractiveSession()
 saver = tf.train.Saver()
 if checkpoint:
 saver.restore(sess, path)
 print("checkpoint restored at path: {}".format(path))
 else:
 tf.global_variables_initializer().run()
 saver.restore(sess, 'model/forward/seq2seq')
 # tf.global_variables_initializer().run()
 with reverse_graph.as_default():
 model = Chatbot(dim_wordvec, len(word_to_index), dim_hidden,
batch_size,
 input_sequence_length, output_sequence_length,

Creating a Chatbot Chapter 16

[377]

learning_rate)
 _, rev_place_holders, _, _, reverse_loss = model.build_model()
 sess2 = tf.InteractiveSession()
 saver2 = tf.train.Saver()

 saver2.restore(sess2, "model/reverse/seq2seq")
 print("reverse model restored")

 dr = Data_Reader(load_list=True)

Next, the data is loaded to train the data in batches.

 for epoch in range(epochs):
 n_batch = dr.get_batch_num(batch_size=batch_size)
 for batch in range(n_batch):

 batch_input, batch_caption, prev_utterance =
dr.generate_training_batch_with_former(batch_size)
 targets, masks = h.make_batch_target(batch_caption,
word_to_index, output_sequence_length)
 inputs_ = h.make_batch_input(batch_input,
input_sequence_length, dim_wordvec, word_vector)

 word_indices, probabilities = sess.run([predictions, logits],
feed_dict={place_holders['word_vectors']: inputs_

 ,
place_holders["caption"]: targets})

 sentence = [h.index2sentence(generated_word, probability,
index_to_word) for
 generated_word, probability in zip(word_indices,
probabilities)]

 word_list = [word.split() for word in sentence]

 generic_test_input = h.make_batch_input(word_list,
input_sequence_length, dim_wordvec, word_vector)

 forward_coherence_target, forward_coherence_masks =
h.make_batch_target(sentence,
word_to_index,
output_sequence_length)

 generic_loss = 0.0

Creating a Chatbot Chapter 16

[378]

Also, learn when to say generic texts as shown here:

 for response in generic_test_input:
 sentence_input = np.array([response] * batch_size)
 feed_dict = {place_holders['word_vectors']: sentence_input,
 place_holders['caption']: generic_caption,
 place_holders['caption_mask']: generic_mask,
 }
 generic_loss_i = sess.run(losses["entropy"],
feed_dict=feed_dict)
 generic_loss -= generic_loss_i / batch_size

 # print("generic loss work: {}".format(generic_loss))

 feed_dict = {place_holders['word_vectors']: inputs_,
 place_holders['caption']:
forward_coherence_target,
 place_holders['caption_mask']:
forward_coherence_masks,
 }

 forward_entropy = sess.run(losses["entropy"],
feed_dict=feed_dict)

 previous_utterance, previous_mask =
h.make_batch_target(prev_utterance,
word_to_index, output_sequence_length)

 feed_dict = {rev_place_holders['word_vectors']:
generic_test_input,
 rev_place_holders['caption']: previous_utterance,
 rev_place_holders['caption_mask']: previous_mask,
 }
 reverse_entropy = sess2.run(reverse_loss["entropy"],
feed_dict=feed_dict)

 rewards = 1 / (1 + np.exp(-reverse_entropy - forward_entropy -
generic_loss))

 feed_dict = {place_holders['word_vectors']: inputs_,
 place_holders['caption']: targets,
 place_holders['caption_mask']: masks,
 place_holders['rewards']: rewards
 }

 _, loss_pg, loss_ent = sess.run([optimizer, losses["pg"],
losses["entropy"]], feed_dict=feed_dict)

Creating a Chatbot Chapter 16

[379]

 if batch % display_interval == 0:
 print("Epoch: {}, batch: {}, Entropy loss: {}, Policy
gradient loss: {}".format(epoch, batch, loss_ent,
loss_pg))

 print("rewards: {}".format(rewards))
print("===")
 saver.save(sess, path)
 print("Model saved at {}".format(path))
 print("Training done")

Next, call the functions defined in sequence. First train a forward model, followed by
reverse model and policy gradient at the end.

train(forward_, forward_epochs, False)
train(reverse_, reverse_epochs, False)
pg_train(100, False)

This concludes the training of the chatbot. The model is trained in forward and reverse
manner to

Testing and results
After training the model, we tested it against our test dataset and obtained reasonably
coherent dialogue. There is one very important issue: the context of the communication.
Hence, depending on the dataset that is used, the result will be in its context. For our
context, the results that were obtained were very reasonable, and they satisfied our three
measures of performance—informativeness (non-repeating turns), high coherence, and
simplicity in answering (this is related to the forward-looking function).

import data_parser
from gensim.models import KeyedVectors
from seq_model import Chatbot
import tensorflow as tf
import numpy as np
import helper as h

Next, declare the paths to the various model that are already trained.

reinforcement_model_path = "model/reinforcement/seq2seq"
forward_model_path = "model/forward/seq2seq"
reverse_model_path = "model/reverse/seq2seq"

Creating a Chatbot Chapter 16

[380]

Next, declare the path of the files consisting of questions and responses.

path_to_questions = 'results/sample_input.txt'
responses_path = 'results/sample_output_RL.txt'

Next, declare the constants required for the model.

word_count_threshold = 20
dim_wordvec = 300
dim_hidden = 1000

input_sequence_length = 25
target_sequence_length = 22

batch_size = 2

Next, load the data and the model as shown here:

def test(model_path=forward_model_path):
 testing_data = open(path_to_questions, 'r').read().split('\n')
 word_vector =
KeyedVectors.load_word2vec_format('model/word_vector.bin', binary=True)

 _, index_to_word, _ =
data_parser.preProBuildWordVocab(word_count_threshold=word_count_threshold)

 model = Chatbot(dim_wordvec, len(index_to_word), dim_hidden,
batch_size,
 input_sequence_length, target_sequence_length,
Training=False)

 place_holders, predictions, logits = model.build_model()

 sess = tf.InteractiveSession()

 saver = tf.train.Saver()

 saver.restore(sess, model_path)

Next, open the responses file and prepare the list of questions as shown here:

 with open(responses_path, 'w') as out:

 for idx, question in enumerate(testing_data):
 print('question =>', question)

 question = [h.refine(w) for w in question.lower().split()]
 question = [word_vector[w] if w in word_vector else
np.zeros(dim_wordvec) for w in question]

Creating a Chatbot Chapter 16

[381]

 question.insert(0, np.random.normal(size=(dim_wordvec,))) #
insert random normal at the first step

 if len(question) > input_sequence_length:
 question = question[:input_sequence_length]
 else:
 for _ in range(input_sequence_length - len(question)):
 question.append(np.zeros(dim_wordvec))

 question = np.array([question])

 feed_dict = {place_holders["word_vectors"]:
np.concatenate([question] * 2, 0),
 }

 word_indices, prob_logit = sess.run([predictions, logits],
feed_dict=feed_dict)

 # print(word_indices[0].shape)
 generated_sentence = h.index2sentence(word_indices[0],
prob_logit[0], index_to_word)

 print('generated_sentence =>', generated_sentence)
 out.write(generated_sentence + '\n')

test(reinforcement_model_path)

By passing the path to the model, we can test the chatbot for various responses.

Creating a Chatbot Chapter 16

[382]

Summary
Chatbots are taking the world by storm, and are predicted to become more prevalent in the
coming years. The coherence of the results obtained from dialogues with these chatbots has
to constantly improve if they are to gain widespread acceptance. One way to achieve this
would be via the use of reinforcement learning.

In this chapter, we implemented reinforcement learning in the creation of a chatbot. The
learning was based on a policy gradient method that focused on the future direction of a
dialogue agent, in order to generate coherent and interesting interactions. The datasets that
we used were from movie conversations. We proceeded to clean and preprocess the
datasets, obtaining the vocabulary from them. We then formulated our policy gradient
method. Our reward functions were represented by a sequence to sequence model. We then
trained and tested our data and obtained very reasonable results, proving the viability of
using reinforcement learning for dialogue agents.

17
Generating a Deep Learning

Image Classifier
Over the past decade, deep learning has made a name for itself by producing state-of-the-
heart results across computer vision, natural language processing, speech recognition, and
many more such applications. Some of the models that human researchers have designed
and engineered have also gained popularity, including AlexNet, Inception, VGGNet,
ResNet, and DenseNet; some of them are now the go-to standard for their respective tasks.
However, it seems that the better the model gets, the more complex the architecture
becomes, especially with the introduction of residual connections between convolutional
layers. The task of designing a high-performance neural network has thus become a very
arduous one. Hence the question arises: is it possible for an algorithm to learn how to
generate neural network architectures?

Generating a Deep Learning Image Classifier Chapter 17

[384]

As the title of this chapter suggests, it is indeed possible to train a neural network to
generate neural networks that perform well on a given task. In this chapter, we will
examine Neural Architecture Search (referred to as NAS henceforth), a novel framework
developed by Barret Zoph and Quoc V. Le from the Google Brain team that uses deep
reinforcement learning to train a Controller to produce child networks that learn to
accomplish tasks. We will learn how policy gradient methods (REINFORCE in particular)
can train such a Controller. We will then implement a Controller that uses NAS to generate
child networks that train on CIFAR-10 data.

In this chapter, we will cover the following:

Understanding NAS and how it learns to generate other neural networks
Implementing a simple NAS framework that generates neural networks for
training on CIFAR-10 data

You can find the original sources of the ensuing topics from the following sources:

Zoph, B., and Le, Q. V. (2016). Neural Architecture Search with reinforcement1.
learning. arXiv preprint arXiv:1611.01578.
Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient Neural2.
Architecture Search via Parameter Sharing. arXiv preprint arXiv:1802.03268.

Neural Architecture Search
The next few sections will describe the NAS framework. You will learn about how the
framework learns to generate other neural networks to complete tasks using a popular
reinforcement learning scheme called REINFORCE, which is a type of policy gradient
algorithm.

Generating a Deep Learning Image Classifier Chapter 17

[385]

Generating and training child networks
Research on algorithms that generate neural architectures has been around since the 1970's.
What sets NAS apart from previous works is its ability to cater to large-scale deep learning
algorithms and its formulation of the task as a reinforcement learning problem. More
specifically, the agent, which we will refer to as the Controller, is a recurrent neural
network that generates a sequence of values. You can think of these values as a sort of
genetic code of the child network that defines its architecture; it sets the sizes of each
convolutional kernel, the length of each kernel, the number of filters in each layer, and so
on. In more advanced frameworks, the values also determine the connections between
layers to generate residual layers:

Figure 1: Overview of the NAS framework

Generating a Deep Learning Image Classifier Chapter 17

[386]

Moreover, each value of the genetic code that the Controller outputs counts as an action, a,
that is sampled with probability, p. Because the Controller is a recurrent neural network, we
can represent the tth action as . Once we have a list of
actions, —where T is some predefined parameter that sets the maximum size of the genetic
code—we can generate the child network with the specified architecture, A:

Figure 2: The architecture of the Controller

Once the Controller generates a child network, we train it on a given task until either some
termination criteria is met (for example, after a specified number of epochs). We then
evaluate the child network on the validation set to produce some validation accuracy, R.
The validation accuracy acts as the reward signal for the Controller. So, the objective of the
Controller is to maximize the expected reward:

Generating a Deep Learning Image Classifier Chapter 17

[387]

Here, J is the reward function (also referred to as the fit function), is the parameters of
the Controller, and the right-hand side of the equation is the expectation of the reward
given a child network architecture, A. In practice, this expectation is calculated by
averaging the rewards over m child network models that the Controller produces in one
batch:

Training the Controller
How do we use this reward signal to update the Controller? Remember, this reward signal
is not differentiable like a loss function in supervised learning; we may not backpropagate
this through the Controller on its own. Instead, we employ a policy gradient method called
REINFORCE to iteratively update the Controller parameters, . In REINFORCE, the
gradient of the reward function, J, with respect to the parameters of the Controller, , is
defined as follows:

You may recall seeing a similar expression in Chapter 15, Learning to Play Go. Indeed, this
is the policy gradient method that AlphaGo and AlphaGo Zero use to update the weights
of their reinforcement learning policy networks. We briefly introduced the method then,
but we will go a bit more in-depth here.

Let's break the preceding equation down. On the right-hand side, we would like to
represent the probability of choosing some architecture, A. In particular,

 represents the probability that the Controller takes action given all the
previous actions, , and the parameters of the Controller, . Again, action
corresponds to the tth value in the genetic sequence that represents the child network's
architecture. The joint probability of choosing all actions, , can be formulated
as follows:

Generating a Deep Learning Image Classifier Chapter 17

[388]

By transforming this joint probability to the log space, we can turn the product into a sum
of probabilities:

In general, we want to maximize this log conditional probability for taking some action. In
other words, we want to increase the likelihood of the Controller generating a particular
sequence of genetic codes. Hence we perform gradient ascent on this objective with respect
to the Controller's parameters by taking the derivative of the log probability of sampling
architecture A:

But how do we update the Controller parameters so that better architectures are generated?
This is where we make use of the reward signal, R. By multiplying the preceding with the
reward signal, we can control the size of the policy gradient. In other words, if a particular
architecture achieved high validation accuracy (with the highest possible being 1.0), the
gradients for that policy will be relatively strong and the Controller will learn to produce
similar architectures. On the other hand, smaller validation accuracies will mean smaller
gradients, which helps the Controller ignore those architectures.

One problem with the REINFORCE algorithm is that the reward signal R can have high
variance, which can lead to unstable training curves. To reduce the variance, it is common
to subtract the reward with some value, b, which we refer to as the baseline function. In
Zoph et al., the baseline function is defined as the exponential moving average of the past
rewards. Hence our REINFORCE policy gradient is now defined as follows:

Once we have this gradient, we apply the usual backpropagation algorithm to update the
Controller parameters, .

Generating a Deep Learning Image Classifier Chapter 17

[389]

Training algorithm
The training steps for the Controller is as follows:

For each episode, do the following:
Generate m child network architectures1.
Train child networks on given task and obtain m validation accuracies2.
Calculate 3.
Update 4.

In Zoph et al., the training procedure is done with several copies of the Controller. Each
Controller is parameterized by , which itself is stored in a distributed manner among
multiple servers, which we call parameter servers.

In each episode of training, the Controller creates several child architectures and trains
them independently. The policy gradient calculated as a result is then sent to the parameter
servers to update the Controller's parameters:

Figure 3: The training architecture

The Controller's parameters are shared among a number of parameter servers. Moreover,
multiple copies of the Controller are trained in parallel, each one calculating rewards and
gradients for its respective batches of child network architectures.

This architecture allows the Controller to be trained quickly given enough resources. For
our purposes, however, we will stick to one Controller that generates m child network
architectures. Once we have trained the Controller for a specified number of episodes, we
calculate the test accuracy by choosing the child network architecture that had the best
validation accuracy and measuring its performance on the test set.

Generating a Deep Learning Image Classifier Chapter 17

[390]

Implementing NAS
In this section, we will implement NAS. In particular, our Controller is tasked with
generating child network architectures that learn to classify images from the CIFAR-10
dataset. The architecture of the child network will be represented by a list of numbers.
Every four values in this list represent a convolutional layer in the child network, each
describing the kernel size, stride length, number of filters, and the pooling window size in
the subsequent pooling layer. Moreover, we specify the number of layers in a child network
as a hyper-parameters. For example, if our child network has three layers, its architecture is
represented as a vector of length 12. If we have an architecture represented as [3, 1, 12,
2, 5, 1, 24, 2], then the child network is a two-layer network where the first layer has
kernel size of 3, stride length of 1, 12 filters, and a max-pooling window size of 2, and the
second layer has kernel size of 5, stride length of 1, 24 filters, and max-pooling window size
of 2. We set the activation function between each layer as ReLU. The final layer involves
flattening the last convolutional layer output and applying a linear layer with the number
of classes as its width, followed by a Softmax activation. The following sections will walk
you through the implementation.

child_network.py
We will first implement our child network module. This module contains a class
called ChildCNN, which constructs a child network given some architecture configuration,
which we call cnn_dna. As mentioned previously, cnn_dna is simply a list of numbers,
with each value representing a parameter of its respective convolutional layer. In
our config.py, we specify the max number of layers a child network can have. For our
implementation, each convolutional layer is represented by four parameters, where each
corresponds to the kernel size, stride length, number of filters, and subsequent max-pooling
window size.

Our ChildCNN is a class that takes the following parameters in its constructor:

cnn_dna: The network architecture
child_id: A string that simply identifies the child network architecture
beta: Weight parameter for L2 regularization
drop_rate: Dropout rate

import logging

import tensorflow as tf

Generating a Deep Learning Image Classifier Chapter 17

[391]

logger = logging.getLogger(__name__)

class ChildCNN(object):

 def __init__(self, cnn_dna, child_id, beta=1e-4, drop_rate=0.2,
**kwargs):
 self.cnn_dna = self.process_raw_controller_output(cnn_dna)
 self.child_id = child_id
 self.beta = beta
 self.drop_rate = drop_rate
 self.is_training = tf.placeholder_with_default(True, shape=None,
name="is_training_{}".format(self.child_id))
 self.num_classes = 10

We also implement a helper function called proces_raw_controller_output(), which
parses cnn_dna that the Controller outputs:

def process_raw_controller_output(self, output):
 """
 A helper function for preprocessing the output of the NASCell
 Args:
 output (numpy.ndarray) The output of the NASCell

 Returns:
 (list) The child network's architecture
 """
 output = output.ravel()
 cnn_dna = [list(output[x:x+4]) for x in range(0, len(output), 4)]
 return cnn_dna

Finally, we include the build method, which builds our child network using the
given cnn_dna. You will notice that, although we are letting the Controller decide the
architecture of our child network, we are still hardcoding several things, such as the
activation function, tf.nn.relu, and the way we initialize the kernels. The fact that we are
adding a max-pooling layer after each convolutional layer is also hardcoded. A more
sophisticated NAS framework would also let the Controller decide these components of the
architecture as well, with the trade off being longer training time:

def build(self, input_tensor):
 """
 Method for creating the child neural network
 Args:
 input_tensor: The tensor which represents the input

 Returns:
 The tensor which represents the output logit (pre-softmax
activation)

Generating a Deep Learning Image Classifier Chapter 17

[392]

 """
 logger.info("DNA is: {}".format(self.cnn_dna))
 output = input_tensor
 for idx in range(len(self.cnn_dna)):
 # Get the configuration for the layer
 kernel_size, stride, num_filters, max_pool_size = self.cnn_dna[idx]
 with tf.name_scope("child_{}_conv_layer_{}".format(self.child_id,
idx)):
 output = tf.layers.conv2d(output,
 # Specify the number of filters the convolutional layer
will output
 filters=num_filters,
 # This specifies the size (height, width) of the
convolutional kernel
 kernel_size=(kernel_size, kernel_size),
 # The size of the stride of the kernel
 strides=(stride, stride),
 # We add padding to the image
 padding="SAME",
 # It is good practice to name your layers
 name="conv_layer_{}".format(idx),
 activation=tf.nn.relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
 bias_initializer=tf.zeros_initializer(),
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=self.beta))

Each convolutional layer is followed by a max-pooling layer and a dropout layer:

 # We apply 2D max pooling on the output of the conv layer
 output = tf.layers.max_pooling2d(
 output, pool_size=(max_pool_size, max_pool_size),
strides=1,
 padding="SAME", name="pool_out_{}".format(idx)
)
 # Dropout to regularize the network further
 output = tf.layers.dropout(output, rate=self.drop_rate,
training=self.is_training)

Finally, after several blocks of convolutional, pooling, and dropout layers, we flatten the
output volume and a fully connected layer:

 # Lastly, we flatten the outputs and add a fully-connected layer
 with tf.name_scope("child_{}_fully_connected".format(self.child_id)):
 output = tf.layers.flatten(output, name="flatten")
 logits = tf.layers.dense(output, self.num_classes)

 return logits

Generating a Deep Learning Image Classifier Chapter 17

[393]

The argument to our build method is an input tensor, which has by default a shape of (32,
32, 3), which is the CIFAR-10 data shape. The reader is free to tweak the architecture of this
network, including adding a few more fully connected layers or inserting batch
normalization layers in between convolutions.

cifar10_processor.py
This module contains code for processing CIFAR-10 data, which we use to train our child
networks. In particular, we construct an input data pipeline using TensorFlow's
native tf.data.Dataset API. Those who have used TensorFlow for some time may be
more familiar with creating tf.placeholder tensors and feeding data
via sess.run(..., feed_dict={...}). However, this is no longer the preferred way of
feeding data into the network; in fact, it is the slowest way to train a network, for the
repetitive conversions from data in numpy format to a native TensorFlow format cause
significant computational overhead. tf.data.Dataset alleviates this problem by turning
the input pipeline into TensorFlow operations that are part of the symbolic graph. In other
words, the data is converted into tensors right from the get-go. This allows for a much
smoother input pipeline that can speed up training.

Refer to this official tutorial (https://www.tensorflow.org/guide/
datasets_for_estimators) for more information on
the tf.data.Dataset API.

The cifar10_processor.py contains a single method to create CIFAR-10 data into
tensors. We first implement a helper function for creating a tf.data.Dataset object:

import logging

import numpy as np
import tensorflow as tf
from keras.datasets import cifar10
from keras.utils import np_utils

logger = logging.getLogger(__name__)

def _create_tf_dataset(x, y, batch_size):
 return tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(x),
tf.data.Dataset.from_tensor_slices(y))).shuffle(500).repeat().batch(batch_s
ize)

https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators
https://www.tensorflow.org/guide/datasets_for_estimators

Generating a Deep Learning Image Classifier Chapter 17

[394]

In the main data processor function, we first load CIFAR-10 data. We use
the keras.datasets API to do this (run pip install keras in your Terminal if you
don't have Keras):

def get_tf_datasets_from_numpy(batch_size, validation_split=0.1):
 """
 Main function getting tf.Data.datasets for training, validation, and
testing

 Args:
 batch_size (int): Batch size
 validation_split (float): Split for partitioning training and
validation sets. Between 0.0 and 1.0.
 """
 # Load data from keras datasets api
 (X, y), (X_test, y_test) = cifar10.load_data()

 logger.info("Dividing pixels by 255")
 X = X / 255.
 X_test = X_test / 255.

 X = X.astype(np.float32)
 X_test = X_test.astype(np.float32)
 y = y.astype(np.float32)
 y_test = y_test.astype(np.float32)

 # Turn labels into onehot encodings
 if y.shape[1] != 10:
 y = np_utils.to_categorical(y, num_classes=10)
 y_test = np_utils.to_categorical(y_test, num_classes=10)

 logger.info("Loaded data from keras")

 split_idx = int((1.0 - validation_split) * len(X))
 X_train, y_train = X[:split_idx], y[:split_idx]
 X_valid, y_valid = X[split_idx:], y[split_idx:]

Generating a Deep Learning Image Classifier Chapter 17

[395]

We then turn these NumPy arrays into TensorFlow tensors, which we can feed directly to
our network. What actually happens in our _create_tf_dataset helper function? We
use the tf.dataset.Dataset.from_tensor_slices() function to turn the data and the
labels, both of which are NumPy arrays, into TensorFlow tensors. We then create the native
dataset by zipping these tensors. The shuffle, repeat, and batch functions after zipping
the data and labels define how we want the input pipeline to work. In our case, we are
shuffling the input data, repeating the dataset once we reach the end, and batching the data
with a given batch size. We also calculate the number of batches that each dataset has and
return them:

train_dataset = _create_tf_dataset(X_train, y_train, batch_size)
valid_dataset = _create_tf_dataset(X_valid, y_valid, batch_size)
test_dataset = _create_tf_dataset(X_test, y_test, batch_size)

Get the batch sizes for the train, valid, and test datasets
num_train_batches = int(X_train.shape[0] // batch_size)
num_valid_batches = int(X_valid.shape[0] // batch_size)
num_test_batches = int(X_test.shape[0] // batch_size)

return train_dataset, valid_dataset, test_dataset, num_train_batches,
num_valid_batches, num_test_batches

And with that, we have an optimized input data pipeline that is much faster than using
feed_dict.

controller.py
The controller.py module is where everything comes together. We will implement the
Controller, which handles training each child network as well as its own parameter
updates. We first implement a helper function that calculates an exponential moving
average of a list of numbers. We use this as the baseline function for our REINFORCE
gradient calculation, as mentioned previously, to calculate the exponential moving average
of the past rewards:

import logging

import numpy as np
import tensorflow as tf

from child_network import ChildCNN
from cifar10_processor import get_tf_datasets_from_numpy
from config import child_network_params, controller_params

logger = logging.getLogger(__name__)

Generating a Deep Learning Image Classifier Chapter 17

[396]

def ema(values):
 """
 Helper function for keeping track of an exponential moving average of a
list of values.
 For this module, we use it to maintain an exponential moving average of
rewards
 Args:
 values (list): A list of rewards

 Returns:
 (float) The last value of the exponential moving average
 """
 weights = np.exp(np.linspace(-1., 0., len(values)))
 weights /= weights.sum()
 a = np.convolve(values, weights, mode="full")[:len(values)]
 return a[-1]

Next, we define our Controller class:

class Controller(object):

 def __init__(self):
 self.graph = tf.Graph()
 self.sess = tf.Session(graph=self.graph)
 self.num_cell_outputs = controller_params['components_per_layer'] *
controller_params['max_layers']
 self.reward_history = []
 self.architecture_history = []
 self.divison_rate = 100
 with self.graph.as_default():
 self.build_controller()

There are several attributes to note: self.num_cell_outputs refers to the number of
values that our recurrent neural network (RNN) should output and corresponds to the
length of the child network architecture configuration. self.reward_history
and self.ar chitecture_history are simply buffers that allow us to keep track of
rewards and child network architectures that the RNN generated.

Generating a Deep Learning Image Classifier Chapter 17

[397]

Method for generating the Controller
We next implement a method for generating the Controller, which we
call build_controller. The first step in constructing our Controller is defining the input
placeholders. We create two of these—one is for the child network DNA, which is fed as
input to the RNN for generating a new child network DNA, and the second is a list for
storing discounted rewards when calculating the gradients for REINFORCE:

def build_controller(self):
 logger.info('Building controller network')
 # Build inputs and placeholders
 with tf.name_scope('controller_inputs'):
 # Input to the NASCell
 self.child_network_architectures = tf.placeholder(tf.float32,
[None, self.num_cell_outputs],
name='controller_input')
 # Discounted rewards
 self.discounted_rewards = tf.placeholder(tf.float32, (None,),
name='discounted_rewards')

We then define the output tensors of our RNN (to be implemented here). Note that the
outputs of the RNN are small, in the range of (-1, 1). So, we multiply the output by 10 in
order to create the child network DNA:

Build controller
with tf.name_scope('network_generation'):
 with tf.variable_scope('controller'):
 self.controller_output =
tf.identity(self.network_generator(self.child_network_architectures),
 name='policy_scores')
 self.cnn_dna_output = tf.cast(tf.scalar_mul(self.divison_rate,
self.controller_output), tf.int32,
 name='controller_prediction')

We then define the loss function and optimizer. We use RMSPropOptimizer as our
backpropagation algorithm, where the learning rate decays exponentially. Rather than
calling optimizer.minimize(loss) as is usually done with other neural network
models, we call the compute_gradients method to obtain gradients for calculating
REINFORCE gradients:

Set up optimizer
self.global_step = tf.Variable(0, trainable=False)
self.learning_rate = tf.train.exponential_decay(0.99, self.global_step,
500, 0.96, staircase=True)
self.optimizer =
tf.train.RMSPropOptimizer(learning_rate=self.learning_rate)

Generating a Deep Learning Image Classifier Chapter 17

[398]

Gradient and loss computation
with tf.name_scope('gradient_and_loss'):
 # Define policy gradient loss for the controller
 self.policy_gradient_loss =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
 logits=self.controller_output[:, -1, :],
 labels=self.child_network_architectures))
 # L2 weight decay for Controller weights
 self.l2_loss = tf.reduce_sum(tf.add_n([tf.nn.l2_loss(v) for v in
tf.trainable_variables(scope="controller")]))
 # Add the above two losses to define total loss
 self.total_loss = self.policy_gradient_loss + self.l2_loss *
controller_params["beta"]
 # Compute the gradients
 self.gradients = self.optimizer.compute_gradients(self.total_loss)

 # Gradients calculated using REINFORCE
 for i, (grad, var) in enumerate(self.gradients):
 if grad is not None:
 self.gradients[i] = (grad * self.discounted_rewards, var)

Finally, we apply the REINFORCE gradients on the Controller parameters:

with tf.name_scope('train_controller'):
 # The main training operation. This applies REINFORCE on the weights of
the Controller
 self.train_op = self.optimizer.apply_gradients(self.gradients,
global_step=self.global_step)

logger.info('Successfully built controller')

The actual Controller network is created via the network_generator function. As
mentioned, the Controller is a recurrent neural network with a special kind of cell.
However, we don't have to implement this from scratch, as the developers behind
TensorFlow have already implemented a custom tf.contrib.rnn.NASCell. We simply
need to use this to construct our recurrent neural network and obtain the outputs:

def network_generator(self, nas_cell_hidden_state):
 # number of output units we expect from a NAS cell
 with tf.name_scope('network_generator'):
 nas = tf.contrib.rnn.NASCell(self.num_cell_outputs)
 network_architecture, nas_cell_hidden_state =
tf.nn.dynamic_rnn(nas, tf.expand_dims(
 nas_cell_hidden_state, -1), dtype=tf.float32)
 bias_variable = tf.Variable([0.01] * self.num_cell_outputs)
 network_architecture = tf.nn.bias_add(network_architecture,
bias_variable)
 return network_architecture[:, -1:, :]

Generating a Deep Learning Image Classifier Chapter 17

[399]

Generating a child network using the Controller
Now, we implement a method that generates a child network using the Controller:

def generate_child_network(self, child_network_architecture):
 with self.graph.as_default():
 return self.sess.run(self.cnn_dna_output,
{self.child_network_architectures: child_network_architecture})

Once we generate our child network, we call the train_child_network function to train
it. This function takes child_dna and child_id and returns the validation accuracy that
the child network achieves. First, we instantiate a new tf.Graph() and a
new tf.Session() so that the child network is separated from the Controller's graph:

def train_child_network(self, cnn_dna, child_id):
 """
 Trains a child network and returns reward, or the validation accuracy
 Args:
 cnn_dna (list): List of tuples representing the child network's DNA
 child_id (str): Name of child network

 Returns:
 (float) validation accuracy
 """
 logger.info("Training with dna: {}".format(cnn_dna))
 child_graph = tf.Graph()
 with child_graph.as_default():
 sess = tf.Session()

 child_network = ChildCNN(cnn_dna=cnn_dna, child_id=child_id,
**child_network_params)

We then define the input data pipeline, which uses the tf.data.Dataset creator we
implemented here. In particular, we use tf.data.Iterator to create a generator that
yields a batch of input tensors every time we call iterator.get_next(). We initialize an
iterator for the training and validation datasets respectively. The batch of input tensors
contains the CIFAR-10 images and the corresponding labels, which we unpack at the end:

Create input pipeline
train_dataset, valid_dataset, test_dataset, num_train_batches,
num_valid_batches, num_test_batches = \
get_tf_datasets_from_numpy(batch_size=child_network_params["batch_size"])

Generic iterator
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,
train_dataset.output_shapes)
next_tensor_batch = iterator.get_next()

Generating a Deep Learning Image Classifier Chapter 17

[400]

Separate train and validation set init ops
train_init_ops = iterator.make_initializer(train_dataset)
valid_init_ops = iterator.make_initializer(valid_dataset)

Build the graph
input_tensor, labels = next_tensor_batch

The input_tensor becomes the argument to the child network's build method. We then
define all the TensorFlow operations needed for training, including the prediction, loss,
optimizer, and accuracy operations:

Build the child network, which returns the pre-softmax logits of the
child network
logits = child_network.build(input_tensor)

Define the loss function for the child network
loss_ops = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels,
logits=logits, name="loss")

Define the training operation for the child network
train_ops =
tf.train.AdamOptimizer(learning_rate=child_network_params["learning_rate"])
.minimize(loss_ops)

The following operations are for calculating the accuracy of the child
network
pred_ops = tf.nn.softmax(logits, name="preds")
correct = tf.equal(tf.argmax(pred_ops, 1), tf.argmax(labels, 1),
name="correct")
accuracy_ops = tf.reduce_mean(tf.cast(correct, tf.float32),
name="accuracy")

initializer = tf.global_variables_initializer()

We then train the child network. Notice that when calling sess.run(...), we are no
longer passing an argument for the feed_dict parameter. Instead, we are simply calling
the operations we want to run (loss_ops, train_ops, and accuracy_ops). This is
because the inputs are already represented as tensors in the child network's graph:

Training
sess.run(initializer)
sess.run(train_init_ops)

logger.info("Training child CNN {} for {} epochs".format(child_id,
child_network_params["max_epochs"]))
for epoch_idx in range(child_network_params["max_epochs"]):
 avg_loss, avg_acc = [], []

Generating a Deep Learning Image Classifier Chapter 17

[401]

 for batch_idx in range(num_train_batches):
 loss, _, accuracy = sess.run([loss_ops, train_ops, accuracy_ops])
 avg_loss.append(loss)
 avg_acc.append(accuracy)

 logger.info("\tEpoch {}:\tloss - {:.6f}\taccuracy -
{:.3f}".format(epoch_idx,
np.mean(avg_loss), np.mean(avg_acc)))

Once training finishes, we calculate the validation accuracy and return it:

 # Validate and return reward
 logger.info("Finished training, now calculating validation accuracy")
 sess.run(valid_init_ops)
 avg_val_loss, avg_val_acc = [], []
 for batch_idx in range(num_valid_batches):
 valid_loss, valid_accuracy = sess.run([loss_ops, accuracy_ops])
 avg_val_loss.append(valid_loss)
 avg_val_acc.append(valid_accuracy)
 logger.info("Valid loss - {:.6f}\tValid accuracy -
{:.3f}".format(np.mean(avg_val_loss),
np.mean(avg_val_acc)))

return np.mean(avg_val_acc)

Finally, we implement a method for training the Controller. Due to computational resource
constraints, we will not parallelize the training procedure (that is, m child networks trained
in parallel per Controller epoch). Instead, we will sequentially generate these child
networks and keep track of the mean validation accuracy among them.

train_controller method
The train_controller method is called after we build the Controller. The first step is
thus to initialize all the variables and the first state:

def train_controller(self):
 with self.graph.as_default():
 self.sess.run(tf.global_variables_initializer())

 step = 0
 total_rewards = 0
 child_network_architecture = np.array([[10.0, 128.0, 1.0, 1.0] *
controller_params['max_layers']], dtype=np.float32)

Generating a Deep Learning Image Classifier Chapter 17

[402]

The first child_network_architecture is a list that resembles an architecture
configuration and will be the argument to NASCell, which would output the first child
DNA.

The training procedure consists of two for loops: one for the number of epochs for the
Controller, and another for each child network the Controller generates per epoch. In the
inner for loop, we generate a new child_network_architecture using NASCell and
train a child network based on it to obtain a validation accuracy:

for episode in range(controller_params['max_episodes']):
 logger.info('=============> Episode {} for Controller'.format(episode))
 step += 1
 episode_reward_buffer = []

 for sub_child in range(controller_params["num_children_per_episode"]):
 # Generate a child network architecture
 child_network_architecture =
self.generate_child_network(child_network_architecture)[0]

 if np.any(np.less_equal(child_network_architecture, 0.0)):
 reward = -1.0
 else:
 reward =
self.train_child_network(cnn_dna=child_network_architecture,
child_id='child/{}'.format("{}_{}".format(episode, sub_child)))
 episode_reward_buffer.append(reward)

After we obtain m validation accuracies, we update our Controller using the mean reward
and the gradients computed with respect to the last child network's DNA. We also keep
track of past mean rewards. Using the ema method implemented previously, we calculate
the baseline, which we then subtract from the latest mean reward. We then
call self.sess.run([self.train_op, self.total_loss]...) to update the
Controller and calculate the Controller's loss:

mean_reward = np.mean(episode_reward_buffer)

self.reward_history.append(mean_reward)
self.architecture_history.append(child_network_architecture)
total_rewards += mean_reward

child_network_architecture = np.array(self.architecture_history[-
step:]).ravel() / self.divison_rate
child_network_architecture = child_network_architecture.reshape((-1,
self.num_cell_outputs))
baseline = ema(self.reward_history)
last_reward = self.reward_history[-1]

Generating a Deep Learning Image Classifier Chapter 17

[403]

rewards = [last_reward - baseline]
logger.info("Buffers before loss calculation")
logger.info("States: {}".format(child_network_architecture))
logger.info("Rewards: {}".format(rewards))

with self.graph.as_default():
 _, loss = self.sess.run([self.train_op, self.total_loss],
 {self.child_network_architectures:
child_network_architecture,
 self.discounted_rewards: rewards})

logger.info('Episode: {} | Loss: {} | DNA: {} | Reward : {}'.format(
 episode, loss, child_network_architecture.ravel(), mean_reward))

And that's it! You can find the full implementation of controller.py in the main GitHub
repository.

Testing ChildCNN
Now that we have implemented both child_network and controller, it would be great
to test the training of ChildCNN via our Controller with custom child network
configurations. We would like to make sure that, with a sensible architecture, ChildCNN
can learn sufficiently.

To do this, first open up your favorite Terminal and start a Jupyter console:

$ ipython
Python 3.6.4 (default, Jan 6 2018, 11:49:38)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.

We first configure our logger so we can see the outputs on the Terminal:

In [1]: import sys

In [2]: import logging

In [3]: logging.basicConfig(stream=sys.stdout,
 ...: level=logging.DEBUG,
 ...: format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
 ...:

In [4]:

Generating a Deep Learning Image Classifier Chapter 17

[404]

Next, we import the Controller class from controller.py:

In [4]: import numpy as np

In [5]: from controller import Controller

In [6]:

We then handcraft some child network architecture to be passed to the
Controller's train_child_network function:

In [7]: dna = np.array([[3, 1, 30, 2], [3, 1, 30, 2], [3, 1, 40, 2]])

Finally, we instantiate our Controller and call the train_child_network method:

In [8]: controller = Controller()

...

2018-09-16 01:58:54,978 controller INFO Successfully built controller

In [9]: controller.train_child_network(dna, "test")

2018-09-16 01:58:59,208 controller INFO Training with dna: [[3 1 30 2]
 [3 1 30 2]
 [3 1 40 2]]
2018-09-16 01:58:59,605 cifar10_processor INFO Dividing pixels by 255
2018-09-16 01:59:01,289 cifar10_processor INFO Loaded data from keras
2018-09-16 01:59:03,150 child_network INFO DNA is: [[3, 1, 30, 2], [3, 1,
30, 2], [3, 1, 40, 2]]
2018-09-16 01:59:14,270 controller INFO Training child CNN first for 1000
epochs

If successful, you should be seeing decent accuracy scores after several epochs of training:

2018-09-16 06:25:01,927 controller INFO Epoch 436: loss - 1.119608 accuracy
- 0.663
2018-09-16 06:25:19,310 controller INFO Epoch 437: loss - 0.634937 accuracy
- 0.724
2018-09-16 06:25:36,438 controller INFO Epoch 438: loss - 0.769766 accuracy
- 0.702
2018-09-16 06:25:53,413 controller INFO Epoch 439: loss - 0.760520 accuracy
- 0.711
2018-09-16 06:26:10,530 controller INFO Epoch 440: loss - 0.606741 accuracy
- 0.812

Generating a Deep Learning Image Classifier Chapter 17

[405]

config.py
The config.py module includes configurations used by the Controller and the child
networks. Here, you can adjust several training parameters, such as the number of
episodes, the learning rate, and the number of child networks generated by the Controller
per epoch. You can also experiment with child network sizes, but do note that the larger the
child network, the longer training takes for both the Controller and the child network:

child_network_params = {
 "learning_rate": 3e-5,
 "max_epochs": 100,
 "beta": 1e-3,
 "batch_size": 20
}

controller_params = {
 "max_layers": 3,
 "components_per_layer": 4,
 'beta': 1e-4,
 'max_episodes': 2000,
 "num_children_per_episode": 10
}

Some of these numbers (such as max_episodes) are arbitrarily chosen. We encourage the
reader to tweak these numbers to understand how they affect the training of both the
Controller and the child networks.

train.py
This train.py module acts as our top-level entry to training the Controller:

import logging
import sys

from .controller import Controller

if __name__ == '__main__':
 # Configure the logger
 logging.basicConfig(stream=sys.stdout,
 level=logging.DEBUG,
 format='%(asctime)s %(name)-12s %(levelname)-8s
%(message)s')
 controller = Controller()
 controller.train_controller()

Generating a Deep Learning Image Classifier Chapter 17

[406]

And there we have it; a neural network that generates other neural networks! Make sure
your implementation has the following directory structure:

src
|-- __init__.py
|-- child_network.py
|-- cifar10_processor.py
|-- config.py
|-- constants.py
|-- controller.py
`-- train.py

To execute training, simply run the following command:

$ python train.py

If all works well, you should be seeing output like the following:

2018-09-16 04:13:45,484 src.controller INFO Successfully built controller
2018-09-16 04:13:45,542 src.controller INFO =============> Episode 0 for
Controller
2018-09-16 04:13:45,952 src.controller INFO Training with dna: [[2 10 2 4
1 1 12 14 7 1 1 1]] 2018-09-16 04:13:45.953482: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu
devices: 0
2018-09-16 04:13:45.953530: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect
StreamExecutor with strength 1 edge matrix:
2018-09-16 04:13:45.953543: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0
2018-09-16 04:13:45.953558: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N
2018-09-16 04:13:45.953840: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow
device (/job:localhost/replica:0/task:0/device:GPU:0 wi th 21618 MB memory)
-> physical GPU (device: 0, name: Tesla M40 24GB, pci bus id: 0000:03:00.0,
compute capability: 5.2)
2018-09-16 04:13:47,143 src.cifar10_processor INFO Dividing pixels by 255
2018-09-16 04:13:55,119 src.cifar10_processor INFO Loaded data from keras
2018-09-16 04:14:09,050 src.child_network INFO DNA is: [[2, 10, 2, 4], [1,
1, 12, 14], [7, 1, 1, 1]]
2018-09-16 04:14:21,326 src.controller INFO Training child CNN child/0_0
for 100 epochs
2018-09-16 04:14:32,830 src.controller INFO Epoch 0: loss - 2.351300
accuracy - 0.100
2018-09-16 04:14:43,976 src.controller INFO Epoch 1: loss - 2.202928
accuracy - 0.180
2018-09-16 04:14:53,412 src.controller INFO Epoch 2: loss - 2.102713

Generating a Deep Learning Image Classifier Chapter 17

[407]

accuracy - 0.220
2018-09-16 04:15:03,704 src.controller INFO Epoch 3: loss - 2.092676
accuracy - 0.232
2018-09-16 04:15:14,349 src.controller INFO Epoch 4: loss - 2.092633
accuracy - 0.240

You should see logging statements for each child network architecture its CIFAR-10
training logs. During CIFAR-10 training, we print the loss and accuracy for each epoch as
well as the validation accuracy which we return to the Controller.

Additional exercises
In this section, we have implemented the NAS framework for CIFAR-10 data. While this is
a great start, there are additional features one can implement, which we will leave to the
reader as exercises:

How can we make the Controller create child networks that solve problems in
other domains, such as text and speech recognition?
How can we make the Controller train multiple child networks in parallel in
order to speed up the training process?
How can we visualize the training process using TensorBoard?
How can we make the Controller design child networks that include residual
connections?

Some of these exercises may require significant changes in the code base but are beneficial
for deepening your understanding of NAS. We definitely recommend giving these a try!

Advantages of NAS
The biggest advantage of NAS is that one does not need to spend copious amounts of time
designing a neural network for a particular problem. This also means that those who are
not data scientists can also create machine learning agents as long as they can prepare data.
In fact, Google has already productized this framework as Cloud AutoML, which allows
anyone to train customized machine learning models with minimum effort. According to
Google, Cloud AutoML provides the following benefits:

Users only need to interact with a simple GUI to create machine learning models.
Users can have Cloud AutoML annotate their own datasets if they are not labeled
already. This is similar to Amazon's Mechanical Turk service.

Generating a Deep Learning Image Classifier Chapter 17

[408]

Models generated by Cloud AutoML are guaranteed to have high accuracy and
fast performance.
Easy end-to-end pipeline for uploading data, training and validating the model,
deploying the model, and creating a REST endpoint for fetching predictions.

Currently, Cloud AutoML can be used for image classification/detection, natural language
processing (text classification), and translation.

For more information on Cloud AutoML, check out their official page
here: https://cloud.google.com/automl/

Another advantage that NAS provides is the ability to generate more compact models than
those designed by humans. According to Efficient Neural Architecture Search via Parameter
Sharing by Hieu Pham et. al., whereas the most recent state-of-the-art neural network for
CIFAR-10 classification had 26.2 million parameters, a NAS-generated neural network that
achieved comparable test accuracy (97.44% for human-designed network versus 97.35% for
the NAS-generated network) only had 3.3 million parameters. Note that older, less-accurate
models such as VGG16, ResNet50, and InceptionV3 have 138 million, 25 million, and 23
million parameters respectively. The vast reduction in parameter size allows for more
efficient inference time and model storage, both of which are important aspects when
deploying models into production.

https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/

Generating a Deep Learning Image Classifier Chapter 17

[409]

Summary
In this chapter, we have implemented NAS, a framework where a reinforcement learning
agent (the Controller) generates child neural networks to complete a certain task. We
studied the theory behind how the Controller learns to generate better child network
architectures via policy gradient methods. We then implemented a simplified version of
NAS that generates child networks that learn to classify CIFAR-10 images.

For more information on related topics, refer to the following list of links:

NAS with reinforcement learning: https://arxiv.org/abs/1611.01578

Efficient NAS via parameter sharing: https://arxiv.org/pdf/1802.03268

Google Cloud AutoML: https://cloud.google.com/automl/

Awesome Architecture Search—a curated list of papers related to generating
neural networks: https://github.com/markdtw/awesome-architecture-search

The NAS framework marks an exciting development in the deep learning field, for we have
figured out how to automatically design neural network architectures, a decision
previously made by humans. There are now improved versions of NAS and other kinds of
algorithms that generate neural networks automatically, which we encourage the reader to
look into as well.

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://arxiv.org/pdf/1802.03268
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://cloud.google.com/automl/
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search
https://github.com/markdtw/awesome-architecture-search

18
Predicting Future Stock Prices

The financial market is a very important part of any economy. For an economy to thrive, its
financial market must be solid. Since the advent of machine learning, companies have
begun to adopt algorithmic trading in the purchase of stocks and other financial assets.
There has been proven successful with this method, and it has risen in prominence over
time. Given its rise, several machine models have been developed and adopted for
algorithmic trading. One popular machine learning model for trading is the time series
analysis. You have already learned about reinforcement learning and Keras, and in this
chapter, they will be used to develop a model that can predict stock prices.

Background problem
Automation is taking over in almost every sector, and the financial market is no exception.
Creating automated algorithmic trading models will provide for a faster and more accurate
analysis of stocks before purchase. Multiple indicators can be analyzed at a speed that
humans are incapable of. Also, in trading, it is dangerous to operate with emotions.
Machine learning models can solve that problem. There is also a reduction in transaction
costs, as there is no need for continuous supervision.

In this tutorial, you will learn how to combine reinforcement learning with time series
modeling, in order to predict the prices of stocks, based on real-life data.

Data used
The data that we will use will be the standard and poor's 500. According to Wikipedia, it
is An American stock market index based on the market capitalizations of 500 large companies
having common stock listed on the NYSE or NASDAQ. Here is a link to the data (https://ca.
finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC).

https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC
https://ca.finance.yahoo.com/quote/%255EGSPC/history?p=%255EGSPC

Predicting Future Stock Prices Chapter 18

[411]

The data has the following columns:

Date: This indicates the date under consideration1.
Open: This indicates the price at which the market opens on the date2.
High: This indicates the highest market price on the date3.
Low: This indicates the lowest market price on the date4.
Close: This indicates the price at which the market closes on the date, adjusted5.
for the split
Adj Close: This indicates the adjusted closing price for both the split and6.
dividends
Volume: This indicates the total volume of shares available7.

The date under consideration for training the data is as follows:

Start: 14 August 2006
End: 13th August 2015

On the website, filter the date as follows, and download the dataset:

For testing, we will use the following date range:

Start: 14 August 2015
End: 14 August 2018

Change the dates on the website accordingly, and download the dataset for testing, as
follows:

Predicting Future Stock Prices Chapter 18

[412]

In the next section, we will define some possible actions that the agent can carry out.

Step-by-step guide
Our solution uses an actor-critic reinforcement learning model, along with an infused time
series, to help us predict the best action, based on the stock prices. The possible actions are
as follows:

Hold: This means that based on the price and projected profit, the trader should1.
hold a stock
Sell: This means that based on the price and projected profit, the trader should2.
sell a stock
Buy: This means that based on the price and projected profit, the trader should3.
buy a stock

The actor-critic network is a family of reinforcement learning methods premised on two
interacting network models. These models have two components: the actor and the critic. In
our case, the network models that we will use will be neural networks. We will use the
Keras package, which you have already learned about, to create the neural networks. The
reward function that we are looking to improve is the profit.

The actor takes in the state of the environment, then returns the best action, or a policy that
refers to a probability distribution over actions. This seems like a natural way to perform
reinforcement learning, as policies are directly returned as a function of the state.

The critic evaluates the actions returned by the actor-network. This is similar to the
traditional deep Q network; in the environment state and an action to return a score
representing the value of taking that action given the state. The job of the critic is to
compute an approximation, which is then used to update the actor in the direction of its
gradient. The critic is trained itself temporal difference algorithm.

These two networks are trained simultaneously. With time, the critic network is able to
improve its Q_value prediction, and the actor also learns how to make better decisions,
given the state.

There are five scripts that make up this solution, and they will be described in the next
sections.

Predicting Future Stock Prices Chapter 18

[413]

Actor script
The actor script is where the policy model is defined. We begin by importing certain
modules from Keras: layers, optimizers, models, and the backend. These modules will help
us to construct our neural network: Let's start by importing the required functions from
Keras.

from keras import layers, models, optimizers
from keras import backend as K

We create a class called Actor, whose object takes in the parameters of the state1.
and action size:

class Actor:
 # """Actor (policy) Model. """

 def __init__(self, state_size, action_size):
 self.state_size = state_size
 self.action_size = action_size

The preceding code shows the state size, which represents the dimension of each2.
state, and the action size, which represents the dimensions of the actions. Next,
call a function to build the model, as follows:

 self.build_model()

Build a policy model that maps the states to actions, and start by defining the3.
input layer, as follows:

 def build_model(self):
 states = layers.Input(shape=(self.state_size,), name='states')

Add hidden layers to the model. There are two dense layers, each one followed4.
by a batch normalization and an activation layer. The dense layers are
regularized. The two layers have 16 and 32 hidden units, respectively:

 net =
layers.Dense(units=16,kernel_regularizer=layers.regularizers.l2(1e-
6))(states)
 net = layers.BatchNormalization()(net)
 net = layers.Activation("relu")(net)
 net =
layers.Dense(units=32,kernel_regularizer=layers.regularizers.l2(1e-
6))(net)
 net = layers.BatchNormalization()(net)
 net = layers.Activation("relu")(net)

Predicting Future Stock Prices Chapter 18

[414]

The final output layer will predict the action probabilities that have an activation5.
of softmax:

 actions = layers.Dense(units=self.action_size,
activation='softmax', name = 'actions')(net)
 self.model = models.Model(inputs=states, outputs=actions)

Define the loss function by using the action value (Q_value) gradients, as6.
follows:

 action_gradients = layers.Input(shape=(self.action_size,))
 loss = K.mean(-action_gradients * actions)

Define the optimizer and training function, as follows:7.

 optimizer = optimizers.Adam(lr=.00001)
 updates_op =
optimizer.get_updates(params=self.model.trainable_weights,
loss=loss)
 self.train_fn = K.function(
 inputs=[self.model.input, action_gradients,
K.learning_phase()],
 outputs=[],
 updates=updates_op)

The custom training function for the actor-network that makes use of the Q gradients with
respect to the action probabilities. With this custom function, the training aims to maximize
the profits (in other words, minimize the negatives of the Q_values).

Critic script
We begin by importing certain modules from Keras: layers, optimizers, models, and the
backend. These modules will help us to construct our neural network:

from keras import layers, models, optimizers
from keras import backend as K

We create a class called Critic, whose object takes in the following parameters:1.

class Critic:
 """Critic (Value) Model."""

 def __init__(self, state_size, action_size):
 """Initialize parameters and build model.
 Params
 ======

Predicting Future Stock Prices Chapter 18

[415]

 state_size (int): Dimension of each state
 action_size (int): Dimension of each action
 """
 self.state_size = state_size
 self.action_size = action_size

 self.build_model()

Build a critic (value) network that maps state and action pairs (Q_values),2.
and define input layers, as follows:

 def build_model(self):
 states = layers.Input(shape=(self.state_size,),
name='states')
 actions = layers.Input(shape=(self.action_size,),
name='actions')

Add the hidden layers for the state pathway, as follows:3.

 net_states =
layers.Dense(units=16,kernel_regularizer=layers.regularizers.l2(1e-
6))(states)
 net_states = layers.BatchNormalization()(net_states)
 net_states = layers.Activation("relu")(net_states)

 net_states = layers.Dense(units=32,
kernel_regularizer=layers.regularizers.l2(1e-6))(net_states)

Add the hidden layers for the action pathway, as follows:4.

 net_actions =
layers.Dense(units=32,kernel_regularizer=layers.regularizers.l2(1e-
6))(actions)

Combine the state and action pathways, as follows:5.

 net = layers.Add()([net_states, net_actions])
 net = layers.Activation('relu')(net)

Add the final output layer to produce the action values (Q_values):6.

 Q_values = layers.Dense(units=1,
name='q_values',kernel_initializer=layers.initializers.RandomUnifor
m(minval=-0.003, maxval=0.003))(net)

Predicting Future Stock Prices Chapter 18

[416]

Create the Keras model, as follows:7.

 self.model = models.Model(inputs=[states, actions],
outputs=Q_values)

Define the optimizer and compile a model for training with the built-in loss8.
function:

 optimizer = optimizers.Adam(lr=0.001)
 self.model.compile(optimizer=optimizer, loss='mse')

Compute the action gradients (the derivative of Q_values, with respect to9.
actions):

 action_gradients = K.gradients(Q_values, actions)

Define an additional function to fetch the action gradients (to be used by the10.
actor model), as follows:

 self.get_action_gradients = K.function(
 inputs=[*self.model.input, K.learning_phase()],
 outputs=action_gradients)

This concludes the critic script.

Agent script
In this section, we will train an agent that will perform reinforcement learning based on the
actor and critic networks. We will perform the following steps to achieve this:

Create an agent class whose initial function takes in the batch size, state size, and1.
an evaluation Boolean function, to check whether the training is ongoing.
In the agent class, create the following methods:2.
Import the actor and critic scripts:3.

from actor import Actor
from critic import Critic

Predicting Future Stock Prices Chapter 18

[417]

Import numpy, random, namedtuple, and deque from the collections4.
package:

import numpy as np
from numpy.random import choice
import random

from collections import namedtuple, deque

Create a ReplayBuffer class that adds, samples, and evaluates a buffer:5.

class ReplayBuffer:
 #Fixed sized buffer to stay experience tuples
 def __init__(self, buffer_size, batch_size):
 #Initialize a replay buffer object.
 #parameters
 #buffer_size: maximum size of buffer. Batch size: size of each
batch
 self.memory = deque(maxlen = buffer_size) #memory size of
replay buffer
 self.batch_size = batch_size #Training batch
size for Neural nets
 self.experience = namedtuple("Experience", field_names =
["state", "action", "reward", "next_state", "done"])
#Tuple containing experienced replay

Add a new experience to the replay buffer memory:6.

 def add(self, state, action, reward, next_state, done):
 e = self.experience(state, action, reward, next_state,
done)
 self.memory.append(e)

Randomly sample a batch of experienced tuples from the memory. In the7.
following function, we randomly sample states from a memory buffer. We do
this so that the states that we feed to the model are not temporally correlated.
This will reduce overfitting:

 def sample(self, batch_size = 32):
 return random.sample(self.memory, k=self.batch_size)

Return the current size of the buffer memory, as follows:8.

 def __len__(self):
 return len(self.memory)

Predicting Future Stock Prices Chapter 18

[418]

The reinforcement learning agent that learns using the actor-critic network is as9.
follows:

class Agent:
 def __init__(self, state_size, batch_size, is_eval = False):
 self.state_size = state_size #

The number of actions are defined as 3: sit, buy, sell10.

 self.action_size = 3

Define the replay memory size11.

 self.buffer_size = 1000000
 self.batch_size = batch_size
 self.memory = ReplayBuffer(self.buffer_size, self.batch_size)
 self.inventory = []

Define whether or not training is ongoing. This variable will be changed during12.
the training and evaluation phase:

 self.is_eval = is_eval

Discount factor in Bellman equation:13.

 self.gamma = 0.99

A soft update of the actor and critic networks can be done as follows:14.

 self.tau = 0.001

The actor policy model maps states to actions and instantiates the actor networks15.
(local and target models, for soft updates of parameters):

 self.actor_local = Actor(self.state_size, self.action_size)
 self.actor_target = Actor(self.state_size, self.action_size)

The critic (value) model that maps the state-action pairs to Q_values is as16.
follows:

 self.critic_local = Critic(self.state_size, self.action_size)

Predicting Future Stock Prices Chapter 18

[419]

Instantiate the critic model (the local and target models are utilized to allow for17.
soft updates), as follows:

 self.critic_target = Critic(self.state_size,
self.action_size)
self.critic_target.model.set_weights(self.critic_local.model.get_we
ights())

The following code sets the target model parameters to local model parameters:18.

self.actor_target.model.set_weights(self.actor_local.model.get_weig
hts()

Returns an action, given a state, using the actor (policy network) and the output19.
of the softmax layer of the actor-network, returning the probability for each
action. An action method that returns an action, given a state, using the actor
(policy network) is as follows:

 def act(self, state):
 options = self.actor_local.model.predict(state)
 self.last_state = state
 if not self.is_eval:
 return choice(range(3), p = options[0])
 return np.argmax(options[0])

Returns a stochastic policy, based on the action probabilities in the training20.
model and a deterministic action corresponding to the maximum probability
during testing. There is a set of actions to be carried out by the agent at every
step of the episode. A method (step) that returns the set of actions to be carried
out by the agent at every step of the episode is as follows:

 def step(self, action, reward, next_state, done):

The following code adds a new experience to the memory:21.

 self.memory.add(self.last_state, action, reward, next_state,
 done)

The following code asserts that enough experiences are present in the memory to22.
train:

 if len(self.memory) > self.batch_size:

The following code samples a random batch from the memory to train:23.

 experiences = self.memory.sample(self.batch_size)

Predicting Future Stock Prices Chapter 18

[420]

Learn from the sampled experiences, as follows:24.

 self.learn(experiences)

The following code updates the state to the next state:25.

 self.last_state = next_state

Learning from the sampled experiences through the actor and the critic. Create a26.
method to learn from the sampled experiences through the actor and the critic, as
follows:

 def learn(self, experiences):
 states = np.vstack([e.state for e in experiences if e is
not None]).astype(np.float32).reshape(-1,self.state_size)
 actions = np.vstack([e.action for e in experiences if e is
not None]).astype(np.float32).reshape(-1,self.action_size)
 rewards = np.array([e.reward for e in experiences if e is
not None]).astype(np.float32).reshape(-1,1)
 dones = np.array([e.done for e in experiences if e is not
None]).astype(np.float32).reshape(-1,1)
 next_states = np.vstack([e.next_state for e in experiences
if e is not None]).astype(np.float32).reshape(-1,self.state_size)

Return a separate array for each experience in the replay component and predict 27.
actions based on the next states, as follows:

 actions_next =
self.actor_target.model.predict_on_batch(next_states)

Predict the Q_value of the actor output for the next state, as follows:28.

 Q_targets_next =
self.critic_target.model.predict_on_batch([next_states,
actions_next])

Target the Q_value to serve as a label for the critic network, based on the29.
temporal difference, as follows:

 Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones)

Fit the critic model to the time difference of the target, as follows:30.

 self.critic_local.model.train_on_batch(x = [states,
actions], y = Q_targets)

Predicting Future Stock Prices Chapter 18

[421]

Train the actor model (local) using the gradient of the critic network output with31.
respect to the action probabilities fed from the actor-network:

 action_gradients =
np.reshape(self.critic_local.get_action_gradients([states, actions,
0]),(-1, self.action_size))

Next, define a custom training function, as follows:32.

 self.actor_local.train_fn([states, action_gradients, 1])

Next, initiate a soft update of the parameters of both networks, as follows:33.

 self.soft_update(self.actor_local.model,
self.actor_target.model)

This performs soft updates on the model parameters, based on the parameter tau34.
to avoid drastic model changes. A method that updates the model by performing
soft updates on the model parameters, based on the parameter tau (to avoid
drastic model changes), is as follows:

 def soft_update(self, local_model, target_model):
 local_weights = np.array(local_model.get_weights())
 target_weights = np.array(target_model.get_weights())
 assert len(local_weights) == len(target_weights)
 new_weights = self.tau * local_weights + (1 - self.tau) *
target_weights
 target_model.set_weights(new_weights)

This concludes the agent script.

Helper script
In this script, we will create functions that will be helpful for training, via the following
steps:

Import the numpy and math modules, as follows:1.

import numpy as np
import math

Predicting Future Stock Prices Chapter 18

[422]

Next, define a function to format the price to two decimal places, to reduce the2.
ambiguity of the data:

def formatPrice(n):
 if n>=0:
 curr = "$"
 else:
 curr = "-$"
 return (curr +"{0:.2f}".format(abs(n)))

Return a vector of stock data from the CSV file. Convert the closing stock prices3.
from the data to vectors, and return a vector of all stock prices, as follows:

def getStockData(key):
 datavec = []
 lines = open("data/" + key + ".csv", "r").read().splitlines()
 for line in lines[1:]:
 datavec.append(float(line.split(",")[4]))
 return datavec

Next, define a function to generate states from the input vector. Create the time4.
series by generating the states from the vectors created in the previous step. The
function for this takes three parameters: the data; a time, t (the day that you want
to predict); and a window (how many days to go back in time). The rate of
change between these vectors will then be measured and based on the sigmoid
function:

def getState(data, t, window):
 if t - window >= -1:
 vec = data[t - window+ 1:t+ 1]
 else:
 vec = -(t-window+1)*[data[0]]+data[0: t + 1]
 scaled_state = []
 for i in range(window - 1):

Next, scale the state vector from 0 to 1 with a sigmoid function. The sigmoid5.
function can map any input value, from 0 to 1. This helps to normalize the values
to probabilities:

 scaled_state.append(1/(1 + math.exp(vec[i] - vec[i+1])))
 return np.array([scaled_state])

All of the necessary functions and classes are now defined, so we can start the training
process.

Predicting Future Stock Prices Chapter 18

[423]

Training the data
We will proceed to train the data, based on our agent and helper methods. This will
provide us with one of three actions, based on the states of the stock prices at the end of the
day. These states can be to buy, sell, or hold. During training, the prescribed action for each
day is predicted, and the price (profit, loss, or unchanged) of the action is calculated. The
cumulative sum will be calculated at the end of the training period, and we will see
whether there has been a profit or a loss. The aim is to maximize the total profit.

Let's start with the imports, as follows:

from agent import Agent
from helper import getStockData, getState
import sys

Next, define the number of market days to consider as the window size, and1.
define the batch size with which the neural network will be trained, as follows:

window_size = 100
batch_size = 32

Instantiate the stock agent with the window size and batch size, as follows:2.

agent = Agent(window_size, batch_size)

Next, read the training data from the CSV file, using the helper function:3.

data = getStockData("^GSPC")
l = len(data) - 1

Next, the episode count is defined as 300. The agent will look at the data for so4.
many numbers of times. An episode represents a complete pass over the data:

episode_count = 300

Next, we can start to iterate through the episodes, as follows:5.

for e in range(episode_count):
 print("Episode " + str(e) + "/" + str(episode_count))

Each episode has to be started with a state based on the data and window size.6.
The inventory of stocks is initialized before going through the data:

 state = getState(data, 0, window_size + 1)
 agent.inventory = []
 total_profit = 0
 done = False

Predicting Future Stock Prices Chapter 18

[424]

Next, start to iterate over every day of the stock data. The action probability is7.
predicted by the agent, based on the state:

 for t in range(l):
 action = agent.act(state)
 action_prob = agent.actor_local.model.predict(state)

 next_state = getState(data, t + 1, window_size + 1)
 reward = 0

The action can be held, if the agent decides not to do anything with the stock.8.
Another possible action is to buy (hence, the stock will be added to the
inventory), as follows:

 if action == 1:
 agent.inventory.append(data[t])
 print("Buy:" + formatPrice(data[t]))

If the action is 2, the agent sells the stocks and removes it from the inventory.9.
Based on the sale, the profit (or loss) is calculated:

 elif action == 2 and len(agent.inventory) > 0: # sell
 bought_price = agent.inventory.pop(0)
 reward = max(data[t] - bought_price, 0)
 total_profit += data[t] - bought_price
 print("sell: " + formatPrice(data[t]) + "| profit: " +
 formatPrice(data[t] - bought_price))

 if t == l - 1:
 done = True
 agent.step(action_prob, reward, next_state, done)
 state = next_state

 if done:
 print("--")
 print("Total Profit: " + formatPrice(total_profit))
 print("--")

You can see logs similar to those that follow during the training process. The10.
stocks are bought and sold at certain prices:

sell: $2102.15| profit: $119.30
sell: $2079.65| profit: $107.36
Buy:$2067.64
sell: $2108.57| profit: $143.75
Buy:$2108.63
Buy:$2093.32

Predicting Future Stock Prices Chapter 18

[425]

Buy:$2099.84
Buy:$2083.56
Buy:$2077.57
Buy:$2104.18
sell: $2084.07| profit: $115.18
sell: $2086.05| profit: $179.92
--
Total Profit: $57473.53

Next, the test data is read from the CSV file. The initial state is inferred from the11.
data. The steps are very similar to a single episode of the training process:

test_data = getStockData("^GSPC Test")
l_test = len(test_data) - 1
state = getState(test_data, 0, window_size + 1)

The profit starts at 0. The agent is initialized with a zero inventory and in test12.
mode:

total_profit = 0
agent.inventory = []
agent.is_eval = False
done = False

Next, every day of trading is iterated, and the agent can act upon the data. Every13.
day, the agent decides an action. Based on the action, the stock is held, sold, or
bought:

for t in range(l_test):
 action = agent.act(state)

If the action is 0, then there is no trade. The state can be called holding during14.
that period:

 next_state = getState(test_data, t + 1, window_size + 1)
 reward = 0

If the action is 1, buy the stock by adding it to the inventory, as follows:15.

 if action == 1:

 agent.inventory.append(test_data[t])
 print("Buy: " + formatPrice(test_data[t]))

Predicting Future Stock Prices Chapter 18

[426]

If the action is 2, the agent sells the stock by removing it from the inventory. The16.
difference in price is recorded as a profit or a loss:

 elif action == 2 and len(agent.inventory) > 0:
 bought_price = agent.inventory.pop(0)
 reward = max(test_data[t] - bought_price, 0)
 total_profit += test_data[t] - bought_price
 print("Sell: " + formatPrice(test_data[t]) + " | profit: "
+ formatPrice(test_data[t] - bought_price))

 if t == l_test - 1:
 done = True
 agent.step(action_prob, reward, next_state, done)
 state = next_state

 if done:
 print("--")
 print("Total Profit: " + formatPrice(total_profit))
 print("--")

Once the script starts to run, the model will get better over time through training.17.
You can see the logs, as follows:

Sell: $2818.82 | profit: $44.80
Sell: $2802.60 | profit: $4.31
Buy: $2816.29
Sell: $2827.22 | profit: $28.79
Buy: $2850.40
Sell: $2857.70 | profit: $53.21
Buy: $2853.58
Buy: $2833.28
--
Total Profit: $10427.24

The model has traded and made a total profit of $10,427. Please note that this style of
trading is not suitable for the real world, as trading involves more costs and uncertainty;
hence, this trading style could have adverse effects.

Final result
After training the data, we tested it against the test dataset. Our model resulted in a total
profit of $10427.24. The best thing about the model was that the profits kept improving
over time, indicating that it was learning well and taking better actions.

Predicting Future Stock Prices Chapter 18

[427]

Summary
In conclusion, machine learning can be applied to several industries and can be applied
very efficiently in financial markets, as you saw in this chapter. We can combine different
models, as we did with reinforcement learning and time series, to produce stronger models
that suit our use cases. We discussed the use of reinforcement learning and time series to
predict the stock market. We worked with an actor-critic model that determined the best
action, based on the state of the stock prices, with the aim of maximizing profits. In the end,
we obtained a result that boasted an overall profit and included increasing profits over
time, indicating that the agent learned more with each state.

In the next chapter, you will learn about the future areas of work.

19
Capstone Project - Car Racing

Using DQN
In the last few chapters, we have learned how Deep Q learning works by approximating the
q function with a neural network. Following this, we have seen various improvements to
Deep Q Network (DQN) such as Double Q learning, dueling network architectures, and
the Deep Recurrent Q Network. We have seen how DQN makes use of a replay buffer to
store the agent's experience and trains the network with the mini-batch of samples from the
buffer. We have also implemented DQNs for playing Atari games and a Deep Recurrent Q
Network (DRQN) for playing the Doom game. In this chapter, let's get into the detailed
implementation of a dueling DQN, which is essentially the same as a regular DQN, except
the final fully connected layer will be broken down into two streams, namely a value
stream and an advantage stream, and these two streams will be clubbed together to
compute the Q function. We will see how to train an agent for winning the car racing game
with a dueling DQN.

In this chapter, you will learn how to implement the following:

Environment wrapper functions
A dueling network
Replay buffer
Training the network
Car racing

Capstone Project - Car Racing Using DQN Chapter 19

[429]

Environment wrapper functions
The credit for the code used in this chapter goes to Giacomo Spigler's GitHub
repository (https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_
Tensorflow). Throughout this chapter, the code is explained at each and every line. For a
complete structured code, check the above GitHub repository.

First, we import all the necessary libraries:

import numpy as np
import tensorflow as tf
import gym
from gym.spaces import Box
from scipy.misc import imresize
import random
import cv2
import time
import logging
import os
import sys

We define the EnvWrapper class and define some of the environment wrapper functions:

class EnvWrapper:

 We define the __init__ method and initialize variables:

 def __init__(self, env_name, debug=False):

Initialize the gym environment:

 self.env = gym.make(env_name)

Get the action_space:

 self.action_space = self.env.action_space

Get the observation_space:

 self.observation_space = Box(low=0, high=255, shape=(84, 84, 4))

https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow

Capstone Project - Car Racing Using DQN Chapter 19

[430]

Initialize frame_num for storing the frame count:

 self.frame_num = 0

Initialize monitor for recording the game screen:

 self.monitor = self.env.monitor

Initialize frames:

 self.frames = np.zeros((84, 84, 4), dtype=np.uint8)

Initialize a Boolean called debug, which, when set to true displays the last few frames:

 self.debug = debug

 if self.debug:
 cv2.startWindowThread()
 cv2.namedWindow("Game")

Next, we define a function called step, which takes the current state as input and returns
the preprocessed next state's frame:

 def step(self, a):
 ob, reward, done, xx = self.env.step(a)
 return self.process_frame(ob), reward, done, xx

We define a function called reset for resetting the environment; after resetting, it will
return the preprocessed game screen:

 def reset(self):
 self.frame_num = 0
 return self.process_frame(self.env.reset())

 Next, we define another function for rendering the environment:

 def render(self):
 return self.env.render()

Now, we define the process_frame function for preprocessing the frame:

 def process_frame(self, frame):

 # convert the image to gray
 state_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # change the size

Capstone Project - Car Racing Using DQN Chapter 19

[431]

 state_resized = cv2.resize(state_gray,(84,110))
 #resize
 gray_final = state_resized[16:100,:]

 if self.frame_num == 0:
 self.frames[:, :, 0] = gray_final
 self.frames[:, :, 1] = gray_final
 self.frames[:, :, 2] = gray_final
 self.frames[:, :, 3] = gray_final

 else:
 self.frames[:, :, 3] = self.frames[:, :, 2]
 self.frames[:, :, 2] = self.frames[:, :, 1]
 self.frames[:, :, 1] = self.frames[:, :, 0]
 self.frames[:, :, 0] = gray_final

 # Next we increment the frame_num counter

 self.frame_num += 1

 if self.debug:
 cv2.imshow('Game', gray_final)

 return self.frames.copy()

After preprocessing, our game screen looks like the following screenshot:

Capstone Project - Car Racing Using DQN Chapter 19

[432]

Dueling network
Now, we build our dueling DQN; we build three convolutional layers followed by two
fully connected layers, and the final fully connected layer will be split into two separate
layers for value stream and advantage stream. We will use the aggregate layer, which
combines both the value stream and the advantage stream, to compute the q value. The
dimensions of these layers are given as follows:

Layer 1: 32 8x8 filters with stride 4 + RELU
Layer 2: 64 4x4 filters with stride 2 + RELU
Layer 3: 64 3x3 filters with stride 1 + RELU
Layer 4a: 512 unit fully-connected layer + RELU
Layer 4b: 512 unit fully-connected layer + RELU
Layer 5a: 1 unit FC + RELU (state value)
Layer 5b: Actions FC + RELU (advantage value)
Layer6: Aggregate V(s)+A(s,a)

class QNetworkDueling(QNetwork):

We define the __init__ method to initialize all layers:

 def __init__(self, input_size, output_size, name):
 self.name = name
 self.input_size = input_size
 self.output_size = output_size
 with tf.variable_scope(self.name):

 # Three convolutional Layers
 self.W_conv1 = self.weight_variable([8, 8, 4, 32])
 self.B_conv1 = self.bias_variable([32])
 self.stride1 = 4

 self.W_conv2 = self.weight_variable([4, 4, 32, 64])
 self.B_conv2 = self.bias_variable([64])
 self.stride2 = 2

 self.W_conv3 = self.weight_variable([3, 3, 64, 64])
 self.B_conv3 = self.bias_variable([64])
 self.stride3 = 1

 # Two fully connected layer
 self.W_fc4a = self.weight_variable([7*7*64, 512])
 self.B_fc4a = self.bias_variable([512])

Capstone Project - Car Racing Using DQN Chapter 19

[433]

 self.W_fc4b = self.weight_variable([7*7*64, 512])
 self.B_fc4b = self.bias_variable([512])

 # Value stream
 self.W_fc5a = self.weight_variable([512, 1])
 self.B_fc5a = self.bias_variable([1])

 # Advantage stream
 self.W_fc5b = self.weight_variable([512, self.output_size])
 self.B_fc5b = self.bias_variable([self.output_size])

We define the __call__ method and perform the convolutional operation:

 def __call__(self, input_tensor):
 if type(input_tensor) == list:
 input_tensor = tf.concat(1, input_tensor)

 with tf.variable_scope(self.name):
 # Perform convolutional on three layers

 self.h_conv1 = tf.nn.relu(tf.nn.conv2d(input_tensor,
self.W_conv1, strides=[1, self.stride1, self.stride1, 1], padding='VALID')
+ self.B_conv1)

 self.h_conv2 = tf.nn.relu(tf.nn.conv2d(self.h_conv1,
self.W_conv2, strides=[1, self.stride2, self.stride2, 1], padding='VALID')
+ self.B_conv2)

 self.h_conv3 = tf.nn.relu(tf.nn.conv2d(self.h_conv2,
self.W_conv3, strides=[1, self.stride3, self.stride3, 1], padding='VALID')
+ self.B_conv3)

 # Flatten the convolutional output
 self.h_conv3_flat = tf.reshape(self.h_conv3, [-1, 7*7*64])
 # Fully connected layer
 self.h_fc4a = tf.nn.relu(tf.matmul(self.h_conv3_flat,
self.W_fc4a) + self.B_fc4a)

 self.h_fc4b = tf.nn.relu(tf.matmul(self.h_conv3_flat,
self.W_fc4b) + self.B_fc4b)

 # Compute value stream and advantage stream
 self.h_fc5a_value = tf.identity(tf.matmul(self.h_fc4a,
self.W_fc5a) + self.B_fc5a)

Capstone Project - Car Racing Using DQN Chapter 19

[434]

 self.h_fc5b_advantage = tf.identity(tf.matmul(self.h_fc4b,
self.W_fc5b) + self.B_fc5b)

 # Club both the value and advantage stream
 self.h_fc6 = self.h_fc5a_value + (self.h_fc5b_advantage -
tf.reduce_mean(self.h_fc5b_advantage, reduction_indices=[1,],
keep_dims=True))

 return self.h_fc6

Replay memory
Now, we build the experience replay buffer, which is used for storing all the agent's
experience. We sample a minibatch of experience from the replay buffer for training the
network:

class ReplayMemoryFast:

First, we define the __init__ method and initiate the buffer size:

 def __init__(self, memory_size, minibatch_size):

 # max number of samples to store
 self.memory_size = memory_size

 # minibatch size
 self.minibatch_size = minibatch_size
 self.experience = [None]*self.memory_size
 self.current_index = 0
 self.size = 0

Next, we define the store function for storing the experiences:

 def store(self, observation, action, reward, newobservation, is_terminal):

Store the experience as a tuple (current state, action, reward, next state, is it a terminal
state):

 self.experience[self.current_index] = (observation, action, reward,
newobservation, is_terminal)
 self.current_index += 1
 self.size = min(self.size+1, self.memory_size)

Capstone Project - Car Racing Using DQN Chapter 19

[435]

If the index is greater than the memory, then we flush the index by subtracting it with
memory size:

 if self.current_index >= self.memory_size:
 self.current_index -= self.memory_size

Next, we define a sample function for sampling a minibatch of experience:

 def sample(self):
 if self.size < self.minibatch_size:
 return []

 # First we randomly sample some indices
 samples_index =
np.floor(np.random.random((self.minibatch_size,))*self.size)

 # select the experience from the sampled indexed
 samples = [self.experience[int(i)] for i in samples_index]

 return samples

Training the network
Now, we will see how to train the network.

First, we define the DQN class and initialize all variables in the __init__ method:

class DQN(object):
 def __init__(self, state_size,
 action_size,
 session,
 summary_writer = None,
 exploration_period = 1000,
 minibatch_size = 32,
 discount_factor = 0.99,
 experience_replay_buffer = 10000,
 target_qnet_update_frequency = 10000,
 initial_exploration_epsilon = 1.0,
 final_exploration_epsilon = 0.05,
 reward_clipping = -1,
):

Capstone Project - Car Racing Using DQN Chapter 19

[436]

Initialize all variables:

 self.state_size = state_size
 self.action_size = action_size

 self.session = session
 self.exploration_period = float(exploration_period)
 self.minibatch_size = minibatch_size
 self.discount_factor = tf.constant(discount_factor)
 self.experience_replay_buffer = experience_replay_buffer
 self.summary_writer = summary_writer
 self.reward_clipping = reward_clipping

 self.target_qnet_update_frequency = target_qnet_update_frequency
 self.initial_exploration_epsilon = initial_exploration_epsilon
 self.final_exploration_epsilon = final_exploration_epsilon
 self.num_training_steps = 0

Initialize the primary dueling DQN by creating an instance to our QNetworkDueling class:

 self.qnet = QNetworkDueling(self.state_size, self.action_size,
"qnet")

Similarly, initialize the target dueling DQN:

 self.target_qnet = QNetworkDueling(self.state_size,
self.action_size, "target_qnet")

Next, initialize the optimizer as an RMSPropOptimizer:

 self.qnet_optimizer =
tf.train.RMSPropOptimizer(learning_rate=0.00025, decay=0.99, epsilon=0.01)

Now, initialize experience_replay_buffer by creating the instance to our
ReplayMemoryFast class:

 self.experience_replay =
ReplayMemoryFast(self.experience_replay_buffer, self.minibatch_size)
 # Setup the computational graph
 self.create_graph()

Capstone Project - Car Racing Using DQN Chapter 19

[437]

Next, we define the copy_to_target_network function for copying weights from the
primary network to our target network:

 def copy_to_target_network(source_network, target_network):
 target_network_update = []

 for v_source, v_target in zip(source_network.variables(),
target_network.variables()):

 # update target network
 update_op = v_target.assign(v_source)
 target_network_update.append(update_op)

 return tf.group(*target_network_update)

Now, we define the create_graph function and build our computational graph:

 def create_graph(self):

We calculate the q_values and select the action that has the maximum q value:

 with tf.name_scope("pick_action"):

 # placeholder for state
 self.state = tf.placeholder(tf.float32, (None,)+self.state_size
, name="state")

 # placeholder for q values
 self.q_values = tf.identity(self.qnet(self.state) ,
name="q_values")

 # placeholder for predicted actions
 self.predicted_actions = tf.argmax(self.q_values, dimension=1 ,
name="predicted_actions")

 # plot histogram to track max q values
 tf.histogram_summary("Q values",
tf.reduce_mean(tf.reduce_max(self.q_values, 1))) # save max q-values to
track learning

 Next, we calculate the target future reward:

 with tf.name_scope("estimating_future_rewards"):
 self.next_state = tf.placeholder(tf.float32,
(None,)+self.state_size , name="next_state")

 self.next_state_mask = tf.placeholder(tf.float32, (None,) ,
name="next_state_mask")

Capstone Project - Car Racing Using DQN Chapter 19

[438]

 self.rewards = tf.placeholder(tf.float32, (None,) ,
name="rewards")

 self.next_q_values_targetqnet =
tf.stop_gradient(self.target_qnet(self.next_state),
name="next_q_values_targetqnet")
 self.next_q_values_qnet =
tf.stop_gradient(self.qnet(self.next_state), name="next_q_values_qnet")

 self.next_selected_actions = tf.argmax(self.next_q_values_qnet,
dimension=1)

 self.next_selected_actions_onehot =
tf.one_hot(indices=self.next_selected_actions, depth=self.action_size)

 self.next_max_q_values = tf.stop_gradient(tf.reduce_sum(
tf.mul(self.next_q_values_targetqnet, self.next_selected_actions_onehot)
, reduction_indices=[1,]) * self.next_state_mask)

 self.target_q_values = self.rewards +
self.discount_factor*self.next_max_q_values

Next, we perform the optimization using RMS prop optimizer:

 with tf.name_scope("optimization_step"):
 self.action_mask = tf.placeholder(tf.float32, (None,
self.action_size) , name="action_mask")

 self.y = tf.reduce_sum(self.q_values * self.action_mask ,
reduction_indices=[1,])

 ## ERROR CLIPPING
 self.error = tf.abs(self.y - self.target_q_values)

 quadratic_part = tf.clip_by_value(self.error, 0.0, 1.0)
 linear_part = self.error - quadratic_part

 self.loss = tf.reduce_mean(0.5*tf.square(quadratic_part) +
linear_part)

 # optimize the gradients

 qnet_gradients =
self.qnet_optimizer.compute_gradients(self.loss, self.qnet.variables())

 for i, (grad, var) in enumerate(qnet_gradients):
 if grad is not None:

Capstone Project - Car Racing Using DQN Chapter 19

[439]

 qnet_gradients[i] = (tf.clip_by_norm(grad, 10), var)

 self.qnet_optimize =
self.qnet_optimizer.apply_gradients(qnet_gradients)

Copy the primary network weights to the target network:

 with tf.name_scope("target_network_update"):
 self.hard_copy_to_target =
DQN.copy_to_target_network(self.qnet, self.target_qnet)

We define the store function for storing all the experience in the
experience_replay_buffer:

 def store(self, state, action, reward, next_state, is_terminal):
 # rewards clipping
 if self.reward_clipping > 0.0:
 reward = np.clip(reward, -self.reward_clipping,
self.reward_clipping)

 self.experience_replay.store(state, action, reward, next_state,
is_terminal)

 We define an action function for selecting actions using a decaying epsilon-greedy policy:

 def action(self, state, training = False):
 if self.num_training_steps > self.exploration_period:
 epsilon = self.final_exploration_epsilon
 else:
 epsilon = self.initial_exploration_epsilon -
float(self.num_training_steps) * (self.initial_exploration_epsilon -
self.final_exploration_epsilon) / self.exploration_period

 if not training:
 epsilon = 0.05

 if random.random() <= epsilon:
 action = random.randint(0, self.action_size-1)
 else:
 action = self.session.run(self.predicted_actions,
{self.state:[state] })[0]

 return action

Capstone Project - Car Racing Using DQN Chapter 19

[440]

Now, we define a train function for training our network:

def train(self):

Copy the primary network weights to the target network:

 if self.num_training_steps == 0:
 print "Training starts..."
 self.qnet.copy_to(self.target_qnet)

Sample experiences from the replay memory:

 minibatch = self.experience_replay.sample()

Get the states, actions, rewards, and next states from the minibatch:

 batch_states = np.asarray([d[0] for d in minibatch])
 actions = [d[1] for d in minibatch]
 batch_actions = np.zeros((self.minibatch_size, self.action_size))
 for i in xrange(self.minibatch_size):
 batch_actions[i, actions[i]] = 1

 batch_rewards = np.asarray([d[2] for d in minibatch])
 batch_newstates = np.asarray([d[3] for d in minibatch])

 batch_newstates_mask = np.asarray([not d[4] for d in minibatch])

Perform the training operation:

 scores, _, = self.session.run([self.q_values, self.qnet_optimize],
 { self.state: batch_states,
 self.next_state: batch_newstates,
 self.next_state_mask:
batch_newstates_mask,
 self.rewards: batch_rewards,
 self.action_mask: batch_actions})

Update the target network weights:

 if self.num_training_steps % self.target_qnet_update_frequency ==
0:
 self.session.run(self.hard_copy_to_target)

 print 'mean maxQ in minibatch: ',np.mean(np.max(scores,1))

 str_ = self.session.run(self.summarize, { self.state:
batch_states,
 self.next_state: batch_newstates,
 self.next_state_mask:

Capstone Project - Car Racing Using DQN Chapter 19

[441]

batch_newstates_mask,
 self.rewards: batch_rewards,
 self.action_mask: batch_actions})

 self.summary_writer.add_summary(str_, self.num_training_steps)

 self.num_training_steps += 1

Car racing
So far, we have seen how to build a dueling DQN. Now, we will see how to make use of
our dueling DQN when playing the car racing game.

First, let's import our necessary libraries:

import gym
import time
import logging
import os
import sys
import tensorflow as tf

Initialize all of the necessary variables:

ENV_NAME = 'Seaquest-v0'
TOTAL_FRAMES = 20000000
MAX_TRAINING_STEPS = 20*60*60/3
TESTING_GAMES = 30
MAX_TESTING_STEPS = 5*60*60/3
TRAIN_AFTER_FRAMES = 50000
epoch_size = 50000
MAX_NOOP_START = 30
LOG_DIR = 'logs'
outdir = 'results'
logger = tf.train.SummaryWriter(LOG_DIR)
Intialize tensorflow session
session = tf.InteractiveSession()

Capstone Project - Car Racing Using DQN Chapter 19

[442]

Build the agent:

agent = DQN(state_size=env.observation_space.shape,
 action_size=env.action_space.n,
 session=session,
 summary_writer = logger,
 exploration_period = 1000000,
 minibatch_size = 32,
 discount_factor = 0.99,
 experience_replay_buffer = 1000000,
 target_qnet_update_frequency = 20000,
 initial_exploration_epsilon = 1.0,
 final_exploration_epsilon = 0.1,
 reward_clipping = 1.0,
)
session.run(tf.initialize_all_variables())
logger.add_graph(session.graph)
saver = tf.train.Saver(tf.all_variables())

Store the recording:

env.monitor.start(outdir+'/'+ENV_NAME,force = True,
video_callable=multiples_video_schedule)
num_frames = 0
num_games = 0
current_game_frames = 0
init_no_ops = np.random.randint(MAX_NOOP_START+1)
last_time = time.time()
last_frame_count = 0.0
state = env.reset()

Now, let's start the training:

while num_frames <= TOTAL_FRAMES+1:
 if test_mode:
 env.render()
 num_frames += 1
 current_game_frames += 1

Select the action, given the current state:

 action = agent.action(state, training = True)

Perform the action on the environment, receive the reward, and move to the next_state:

 next_state,reward,done,_ = env.step(action)

Capstone Project - Car Racing Using DQN Chapter 19

[443]

Store this transitional information in the experience_replay_buffer:

 if current_game_frames >= init_no_ops:
 agent.store(state,action,reward,next_state,done)
 state = next_state

Train the agent:

 if num_frames>=TRAIN_AFTER_FRAMES:
 agent.train()

 if done or current_game_frames > MAX_TRAINING_STEPS:
 state = env.reset()
 current_game_frames = 0
 num_games += 1
 init_no_ops = np.random.randint(MAX_NOOP_START+1)

Save the network's parameters after every epoch:

 if num_frames % epoch_size == 0 and num_frames > TRAIN_AFTER_FRAMES:
 saver.save(session,
outdir+"/"+ENV_NAME+"/model_"+str(num_frames/1000)+"k.ckpt")
 print "epoch: frames=",num_frames," games=",num_games

We test the performance for every two epochs:

 if num_frames % (2*epoch_size) == 0 and num_frames > TRAIN_AFTER_FRAMES:
 total_reward = 0
 avg_steps = 0
 for i in xrange(TESTING_GAMES):
 state = env.reset()
 init_no_ops = np.random.randint(MAX_NOOP_START+1)
 frm = 0

 while frm < MAX_TESTING_STEPS:
 frm += 1
 env.render()
 action = agent.action(state, training = False)
 if current_game_frames < init_no_ops:
 action = 0
 state,reward,done,_ = env.step(action)
 total_reward += reward

 if done:
 break

 avg_steps += frm
 avg_reward = float(total_reward)/TESTING_GAMES

Capstone Project - Car Racing Using DQN Chapter 19

[444]

 str_ = session.run(tf.scalar_summary('test reward
('+str(epoch_size/1000)+'k)', avg_reward))
 logger.add_summary(str_, num_frames)
 state = env.reset()

env.monitor.close()

We can see how the agent is learning to win the car racing game, as shown in the following
screenshot:

Summary
In this chapter, we have learned how to implement a dueling DQN in detail. We started off
with the basic environment wrapper functions for preprocessing our game screens and then
we defined the QNetworkDueling class. Here, we implemented a dueling Q Network,
which splits the final fully connected layer of DQN into a value stream and an advantage
stream and then combines these two streams to compute the q value. Following this, we
saw how to create a replay buffer, which is used to store the experience and samples a
minibatch of experience for training the network, and finally, we initialized our car racing
environment using OpenAI's Gym and trained our agent. In our final chapter, Chapter 20,
Looking Ahead, we will see some of the recent advancements in RL.

Capstone Project - Car Racing Using DQN Chapter 19

[445]

Questions
The question list is as follows:

What is the difference between a DQN and a dueling DQN?1.
Write the Python code for a replay buffer.2.
What is a target network?3.
Write the Python code for a prioritized experience replay buffer.4.
Create a Python function to decay an epsilon-greedy policy.5.
How does a dueling DQN differ from a double DQN?6.
Create a Python function for updating primary network weights to the target7.
network.

Further reading
The following links will help expand your knowledge:

Flappy Bird using DQN: https://github.com/yenchenlin/
DeepLearningFlappyBird

Super Mario using DQN: https://github.com/JSDanielPark/tensorflow_dqn_
supermario

https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario

20
Looking Ahead

Over the past few hundred pages, we have faced numerous challenges, to which we
applied reinforcement and deep learning algorithms. To conclude our reinforcement
learning (RL) journey, this chapter will look at several aspects of the field that we have not
covered yet. We will start by looking at several of the drawbacks of reinforcement learning,
which any practitioner or researcher should be aware of. To end on a positive note, we will
follow up by describing numerous exciting academic developments and achievements the
field has seen in recent years.

The shortcomings of reinforcement learning
So far, we have only covered what reinforcement learning algorithms can do. To the reader,
reinforcement learning may seem like the panacea for all kinds of problems. But why do we
not see a ubiquitous application of reinforcement learning algorithms in real-life situations?
The reality is that the field has a myriad of shortcomings that hinder commercial adoption.

Why is it necessary to talk about the field's flaws? We think this will help you build a more
holistic, less biased view of reinforcement learning. Moreover, understanding the
weaknesses of reinforcement learning and machine learning is an important quality of a
good machine learning researcher or practitioner. In the following subsections, we will
discuss a few of the most important limitations that reinforcement learning is currently
facing.

Looking Ahead Chapter 20

[447]

Resource efficiency
Current deep reinforcement learning algorithms require vast amounts of time, training
data, and computational resources in order to reach a desirable level of proficiency. For
algorithms such as AlphaGo Zero, where our reinforcement learning algorithm learns to
play Go with zero prior knowledge and experience, resource efficiency becomes a major
bottleneck for taking such algorithms to commercial scales. Recall that when DeepMind
implemented AlphaGo Zero, they needed to train the agent on tens of millions of games
using hundreds of GPUs and thousands of CPUs. For AlphaGo Zero to reach a reasonable
proficiency, it needs to play a number of games, equivalent to what hundreds of thousands
of humans would play in their lifetimes.

Unless, in the future, the average consumer can readily leverage vast amounts of
computational power that only the likes of Google and Nvidia can offer today, the ability to
develop superhuman reinforcement learning algorithms will continue to be way beyond
the public's reach. This means that powerful, resource-hungry reinforcement learning
algorithms will be monopolized by a small consortium of institutions, which is probably
not a great thing.

Thus, making reinforcement learning algorithms trainable under limited resources will
continue to be an important issue that the community must address.

Reproducibility
In numerous fields of scientific research, a prevalent problem has been the inability to
reproduce the experimental results claimed in academic papers and journals. In a 2016
survey conducted by Nature, the world's most renowned scientific journal, 70% of
respondents claimed that they have failed to reproduce their own or another researcher's
experimental results. Moreover, the attitude toward the inability to reproduce experimental
results was a stark one, with 90% of researchers thinking that there is indeed a
reproducibility crisis.

The original work reported by nature can be found here: https://www.
nature.com/news/1-500-scientists-lift-the-lid-on-
reproducibility-1.19970.

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Looking Ahead Chapter 20

[448]

While this survey targeted researchers across a number of disciplines, including biology
and chemistry, reinforcement learning is also facing a similar problem. In the paper Deep
Reinforcement Learning Matters (reference at the end of this chapter; you can view it
at https://arxiv.org/pdf/1709.06560.pdf for the online version), Peter Henderson et al.
study the effects of different configurations of a deep reinforcement learning algorithm on
experimental outcomes. These configurations include hyperparameters, seeds for the
random number generator, and network architecture.

In extreme cases, they found that, when training the same model on two sets of five
different random seed configurations, the resulting average return for the two sets of
models diverged significantly. Moreover, changing other settings, such as the architecture
of the CNN, activation functions, and learning rates, have profound effects on the outcome.

What are the implications of inconsistent, unreproducible results? As the adoption and
popularity of reinforcement learning and machine learning continues to grow at near
exponential rates, the number of implementations of reinforcement learning algorithms
freely available on the internet also increases. If those implementations cannot reproduce
the results they claim to be able to achieve, this would cause major issues and potential
danger in real-life applications. Certainly, no one would want their self-driving car to be
implemented so that it cannot produce consistent decisions!

Explainability/accountability
We have seen how an agent's policy can return either a single action or a probability
distribution over a set of possible actions and how its value function can return how
desirable a certain state is. But how can a model explain how it arrived at such predictions?
As reinforcement learning becomes more popular and potentially more prevalent in real-
life applications, there will be an ever-increasing need to be able to explain the output of
reinforcement learning algorithms.

Today, most advanced reinforcement learning algorithms incorporate deep neural
networks, which, as of now, can only be represented as a set of weights and a sequence of
non-linear functions. Moreover, due to its high dimensional nature, neural networks are not
able to provide any meaningful, intuitive relationships between input and their
corresponding output that can be understood easily by humans. Hence, deep learning
algorithms are often referred to as black boxes, for it is difficult for us to understand what is
really going on inside a neural network.

https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf
https://arxiv.org/pdf/1709.06560.pdf

Looking Ahead Chapter 20

[449]

Why is it important for a reinforcement learning algorithm to be explainable? Suppose an
autonomous car is involved in a car accident (let's assume it was just an innocuous bump
between two cars and the drivers are not hurt). Human drivers would be able to explain
what led to the crash; they can give reasons for why they performed a particular maneuver
and what exactly happened when the accident occurred. This would help law enforcement
ascertain the cause of the accident and potentially determine who or what was accountable.
However, even if we create an agent that can drive cars sufficiently well using algorithms
available today, this is simply not possible.

Without the ability to explain predictions, it will be difficult for users and the general public
to trust software that uses any kind of machine learning, especially in use cases where the
algorithms are accountable for making important decisions. This is a serious impediment to
the adoption of reinforcement learning algorithms in practical applications.

Susceptibility to attacks
Deep learning algorithms have shown incredible results across numerous tasks, including
computer vision, natural language processing, and speech recognition. In several tasks,
deep learning has already surpassed human capabilities. However, recent work has shown
that these algorithms are incredibly vulnerable to attacks. By attacks, we mean attempts to
make imperceptible modifications to the input which causes the model to behave
differently. Take the following example:

An illustration of adversarial attacks. By adding imperceptible perturbations to an image, an attacker can easily fool deep learning image classifiers.

Looking Ahead Chapter 20

[450]

The rightmost image is the result of adding the left image, which is the original image, and
the middle image, which represents the perturbations added to the original image. Even the
most accurate, well-performing deep neural network image classifier fails to identify the
right image as a goat and instead predicts it to be a toaster.

These examples have shocked many in the research community, for people did not expect
that deep learning algorithms can be incredibly brittle and susceptible to such attacks. This
field is now called adversarial machine learning and has been rapidly increasing in
prominence and importance as more researchers around the world are investigating the
robustness and vulnerabilities of deep learning algorithms.

Reinforcement learning algorithms are also no stranger to these results and attacks.
According to the paper titled Robust Deep Reinforcement Learning with Adversarial
Attacks (https://arxiv.org/abs/1712.03632) by Anay Pattanaik et. al., adversarial attacks
to reinforcement learning algorithms can be defined as any possible perturbation that leads
the agent into an increased probability of taking the worst possible action in that state. For
example, we can add noise to the screen of an Atari game with the intention of tricking the
RL agent playing the game to make a poor decision, which leads to a lower score.

More serious applications include adding noise to street signs to trick a self-driving car into
thinking that a STOP sign is a speed sign, making an ATM recognize a $100 check as a
$1,000,000 one, or even fooling a facial-recognition system to identify an attacker's face as
that of another user.

Needless to say, these vulnerabilities further add to the risks of adopting deep learning
algorithms in practical, safety-critical use cases. While there are numerous ongoing efforts
to countervail adversarial attacks, there is still a long way to go for deep learning
algorithms to become robust enough for such use cases.

Upcoming developments in reinforcement
learning
The past few sections may have painted a stark outlook for deep learning and
reinforcement learning. However, there is no need to feel entirely discouraged; this is, in
fact, an exciting time for DL and RL, where many significant advances in research are
continuing to shape the field and cause it to evolve at a rapid pace. With increasing
availability of computational resources and data, the possibilities of expanding and
improving deep learning and reinforcement learning algorithms continue to expand.

https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632
https://arxiv.org/abs/1712.03632

Looking Ahead Chapter 20

[451]

Addressing the limitations
For one, the issues raised in the preceding section are recognized and acknowledged by the
research community. There are several efforts being made to address them. In the work by
Pattanaik et. al., not only do the authors demonstrate that current deep reinforcement
learning algorithms are susceptible to adversarial attacks, they also propose techniques that
can make the same algorithms more robust toward such attacks. In particular, by training
deep RL algorithms on examples that were adversarially perturbed, the model can improve
its robustness against similar attacks. This technique is commonly referred to as adversarial
training.

Moreover, the research community is actively taking actions to solve the reproducibility
problem. ICLR and ICML, two of the biggest conferences in machine learning, have hosted
challenges where participants are invited to reimplement and re-run experiments
conducted by submitted papers to reproduce the reported results. Participants are then
required to critique the original work by writing a reproducibility report that describes the
problem statement, experimental methodology, implementation details, analyses, and the
reproducibility of the original paper. Organized by Joelle Pineau and McGill University,
this challenge aims to promote transparency in experiments and academic work as well as
to ensure the reproducibility and integrity of results.

More information on the ICLR 2018 reproducibility challenge can be
found here: https://www.cs.mcgill.ca/~jpineau/ICLR2018-
ReproducibilityChallenge.html. Similarly, the original ICML workshop
on reproducibility can be found here: https://sites.google.com/view/
icml-reproducibility-workshop/home.

Transfer learning
Another important topic that is increasing in importance and attention is transfer learning.
Transfer learning is a paradigm in machine learning, where a model trained on one task is
fine-tuned to accomplish another.

For example, we can train a model to recognize images of cars and use the weights of that
model to initialize an identical model that learns to recognize trucks. The main intuition is
that certain abstract concepts and features learned by training on one task are transferable
to other similar tasks. This idea is applicable to many reinforcement learning problems as
well. An agent that learns to play a particular Atari game should be able to play other Atari
games proficiently without training entirely from scratch, much like how a human can.

https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home

Looking Ahead Chapter 20

[452]

Demis Hassabis, the founder of DeepMind and a pioneer in deep reinforcement learning,
said in a recent talk that transfer learning is the key to general intelligence. And I think the
key to doing transfer learning will be the acquisition of conceptual knowledge that is
abstracted away from perceptual details of where you learned it from.

The Demis Hassabis quote and the talk in which this was mentioned can
be found here: https://www.youtube.com/watch?v=YofMOh6_WKo

There have already been several advances in computer vision and natural language
processing, where models initialized with knowledge and priors from one domain are used
to learn about data from another domain.

This is especially useful when the second domain lacks data. Called few-shot or one-shot
learning, these techniques allow models to learn to perform tasks well, even when the
dataset is small, as illustrated in the following diagram:

An illustration of a few-shot learning classifier learning good decision boundaries for classes with small volumes of data

https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo
https://www.youtube.com/watch?v=YofMOh6_WKo

Looking Ahead Chapter 20

[453]

Few-shot learning for reinforcement learning would involve having the agent learn to
achieve high proficiency on a given task without a high dependence on time, data, and
computational resources. Imagine a generalized game-playing agent that can easily be fine-
tuned to perform well on any other video game using readily-available computational
resources; this would make training RL algorithms a lot more efficient and thus more
accessible to a wider audience.

Multi-agent reinforcement learning
Another promising area making significant strides is multi-agent reinforcement learning.
Contrary to the problems we've seen where only one agent makes decisions, this topic
involves having multiple agents make decisions simultaneously and cooperatively in order
to achieve a common objective. One of the most significant works related to this has been
OpenAI's Dota2-playing system, called OpenAI Five. Dota2 is one of the world's most
popular Massively Multiplayer Online Role Playing Game (MMORPGs). Compared to
traditional RL games such as Go and Atari, Dota2 is more complex for the following
reasons:

Multiple agents: Dota2 games involve two teams of five players, each fighting to
destroy the other team's base. Hence there are multiple agents, not just one,
making decisions simultaneously.
Observability: The screen only shows the proximity of the agent's character
instead of the whole map. This means that the whole game state, including the
locations of opponents and what they are doing, is not observable. In
reinforcement learning, we call this a partially-observable state.
High dimensionality: A Dota2 agent's observations can include 20,000 points,
each depicting what a human player may observe on the screen, including
health, the location of the controlling character, the location of enemies, and any
attacks. Go, on the other hand, requires fewer data points to construct an
observation (19 x 19 board, past moves). Hence, observations have high
dimensionality and complexity. This also goes for decisions, where a Dota2 AI's
action space consists of 170,000 possibilities, which includes decisions on
movement, casting spells, and using items.

For more information on OpenAI's Dota2 AI, check out their blogs on the
project at https://blog.openai.com/openai-five/.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Looking Ahead Chapter 20

[454]

Moreover, by using novel upgrades on traditional reinforcement learning algorithms, each
agent in OpenAI Five was able to learn to cooperate with one another in order to reach the
common objective of destroying the enemy's base. They were even able to learn several
team strategies that experienced human players employ. The following is a screenshot from
a game being played between a team of Dota players and OpenAI Five:

OpenAI versus human players (source: https://www.youtube.com/watch?v=eaBYhLttETw)

Despite the extreme levels of resource requirements (240 GPUs, 120,000 CPU cores, ~200
human years of gameplay in a single day), this project demonstrates that current AI
algorithms are indeed able to cooperate with one another to reach a common objective in a
vastly complex environment. This work symbolizes another significant advancement in AI
and RL research and demonstrates what the current technology is capable of.

https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw
https://www.youtube.com/watch?v=eaBYhLttETw

Looking Ahead Chapter 20

[455]

Summary
This concludes our introductory journey into reinforcement learning. Over the course of
this book, we learned how to implement agents that can play Atari games, navigate
Minecraft, predict stock market prices, play the complex board game of Go, and even
generate other neural networks to train on CIFAR-10 data. In doing so, you acquired and
became accustomed to some of the fundamental and state-of-the-art deep learning and
reinforcement learning algorithms. In short, you have achieved a lot!

But the journey does not and should not end here. We hope that, with your newfound skills
and knowledge, you will continue to utilize deep learning and reinforcement learning
algorithms to tackle problems that you face outside of this book. More importantly, we
hope that this guide motivates you to explore other fields of machine learning and further
develop your knowledge and experience.

There are many obstacles for the reinforcement learning community to overcome.
However, there is much to look forward to. With the increasing popularity and
development of the field, we can't wait to see what new developments and milestones the
field will achieve. We hope the reader, upon completing this guide, will feel more equipped
and ready to build reinforcement learning algorithms and make significant contributions to
the field.

References
Open Science Collaboration. (2015). Estimating the reproducibility of psychological
science. Science, 349(6251), aac4716.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2017). Deep
reinforcement learning that matters. arXiv preprint arXiv:1709.06560.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and Chowdhary, G. (2018, July). Robust
deep reinforcement learning with adversarial attacks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems (pp. 2040-2042). International
Foundation for Autonomous Agents and Multiagent Systems.

Assessments

Chapter 1: Introduction to Reinforcement
Learning

Reinforcement learning (RL) is a branch of machine learning where the learning1.
occurs via interacting with an environment.
RL works by train and error method, unlike other ML paradigms.2.
Agents are the software programs that make intelligent decisions and they are3.
basically learners in RL.
Policy function specifies what action to take in each state and value function4.
specifies the value of each state.
In model-based agent use the previous experience whereas in model-free5.
learning there won't be any previous experience.
Deterministic, stochastic, fully observable, partially observable, discrete6.
continuous, episodic and non-episodic.
OpenAI Universe provides rich environments for training RL agents.7.
Refer section Applications of RL.8.

Chapter 2: Getting Started with OpenAI and
TensorFlow

conda create --name universe python=3.6 anaconda1.
With Docker, we can pack our application with its dependencies, which is called2.
container, and we can simply run our applications on the server without using
any external dependency with our packed Docker container.
gym.make(env_name)3.
from gym import envs4.
print(envs.registry.all())

OpenAI Universe is an extension of OpenAI Gym and it also provides various5.
rich environments.

Assessments

[457]

Placeholder is used for feeding external data whereas variable is used for holding6.
values.
Everything in TensorFlow will be represented as a computational graph that7.
consists of nodes and edges, where nodes are the mathematical operations, say
addition, multiplication and so on, and edges are the tensors.
Computation graphs will only be defined; in order to execute the computation8.
graph, we use TensorFlow sessions.

Chapter 3: The Markov Decision Process
and Dynamic Programming

The Markov property states that the future depends only on the present and not1.
on the past.
MDP is an extension of the Markov chain. It provides a mathematical framework2.
for modeling decision-making situations. Almost all RL problems can be
modeled as MDP.
Refer section Discount factor.3.
The discount factor decides how much importance we give to the future rewards4.
and immediate rewards.
We use Bellman function for solving the MDP.5.
Refer section Deriving the Bellman equation for value and Q functions.6.
Value function specifies goodness of a state and Q function specifies goodness of7.
an action in that state.
Refer section Value iteration and Policy iteration.8.

Chapter 4: Gaming with Monte Carlo
Methods

The Monte Carlo algorithm is used in RL when the model of the environment is1.
not known.
Refer section Estimating the value of pi using Monte Carlo.2.
In Monte Carlo prediction, we approximate the value function by taking the3.
mean return instead of the expected return.

Assessments

[458]

In every visit Monte Carlo, we average the return every time the state is visited in4.
an episode. But in the first visit MC method, we average the return only the first
time the state is visited in an episode.
Refer section Monte Carlo control.5.
Refer section On-policy Monte Carlo control and Off-policy Monte Carlo control6.
Refer section Let's play Blackjack with Monte Carlo.7.

Chapter 5: Temporal Difference Learning
Monte Carlo methods are applied only for episodic tasks whereas TD learning1.
can be applied to both episodic and nonepisodic tasks
The difference between the actual value and the predicted value is called TD2.
error
Refer section TD prediction and TD control3.
Refer section Solving taxi problem using Q learning4.
In Q learning, we take action using an epsilon-greedy policy and, while updating5.
the Q value, we simply pick up the maximum action. In SARSA, we take the
action using the epsilon-greedy policy and also, while updating the Q value, we
pick up the action using the epsilon-greedy policy.

Chapter 6: Multi-Armed Bandit Problem
An MAB is actually a slot machine, a gambling game played in a casino where1.
you pull the arm (lever) and get a payout (reward) based on a randomly
generated probability distribution. A single slot machine is called a one-armed
bandit and, when there are multiple slot machines it is called multi-armed
bandits or k-armed bandits.
An explore-exploit dilemma arises when the agent is not sure whether to explore2.
new actions or exploit the best action using the previous experience.
The epsilon is used to for deciding whether the agent should explore or exploit3.
actions with 1-epsilon we choose best action and with epsilon we explore new
action.
We can solve explore-exploit dilemma using a various algorithm such epsilon-4.
greedy policy, softmax exploration, UCB, Thompson sampling.

Assessments

[459]

The UCB algorithm helps us in selecting the best arm based on a confidence5.
interval.
In Thomson sampling, we estimate using prior distribution and in UCB we6.
estimate using a confidence interval.

Chapter 8: Atari Games with Deep Q
Network

Deep Q Network (DQN) is a neural network used for approximating the Q1.
function.
Experience replay is used to remove the correlations between the agent's2.
experience.
When we use the same network for predicting target value and predicted value3.
there will lot of divergence so we use separate target network.
Because of the max operator DQN overestimates Q value.4.
By having two separate Q functions each learning independently double DQN5.
avoids overestimating Q values.
Experiences are priorities based on TD error in prioritized experience replay.6.
Dueling DQN estimating the Q value precisely by breaking the Q function7.
computation into value function and advantage function.

Chapter 9: Playing Doom with a Deep
Recurrent Q Network

DRQN makes use of recurrent neural network (RNN) where DQN makes use of1.
vanilla neural network.
DQN is not used applied when the MDP is partially observable.2.
Refer section Doom with DRQN.3.
DARQN makes use of attention mechanism unlike DRQN.4.
DARQN is used to understand and focus on particular area of game screen5.
which is more important.
Soft and hard attention.6.
We set living reward to 0 which the agent does for each move, even though the7.
move is not useful.

Assessments

[460]

Chapter 10: The Asynchronous Advantage
Actor Critic Network

A3C is the Asynchronous Advantage Actor Critic network which uses several1.
agents to learn parallel.
Three A's are Asynchronous, Advantage, Actor Critic.2.
A3C requires less computation power and training time than DQN.3.
All agents (workers) works in copies of the environment and then global network4.
aggregate their experience.
Entropy is used to ensure enough exploration.5.
Refer section How A3C works.6.

Chapter 11: Policy Gradients and
Optimization

The policy gradient is one of the amazing algorithms in RL where we directly1.
optimize the policy parameterized by some parameter.
Policy gradients are effective as we don't need to compute Q function to find the2.
optimal policy.
The role of the Actor network is to determine the best actions in the state by3.
tuning the parameter, and the role of the Critic is to evaluate the action produced
by the Actor.
Refer section Trust region policy optimization4.
We iteratively improve the policy and we impose a constraint that5.
Kullback–Leibler (KL) divergence between old policy and a new policy is to be
less than some constant. This constraint is called the trust region constraint.
PPO modifies the objective function of TRPO by changing the constraint to a6.
penalty a term so that we don't want to perform conjugate gradient.

Assessments

[461]

Chapter 19: Capstone Project – Car Racing
Using DQN

DQN computes the Q value directly whereas Dueling DQN breaks down the Q1.
value computation into value function and advantage function.
Refer section Replay memory.2.
When we use the same network for predicting target value and predicted value3.
there will lot of divergence so we use separate target network.
Refer section Replay memory.4.
Refer section Dueling network.5.
Dueling DQN breaks down the Q value computation into value function and6.
advantage function whereas double DQN uses two Q function to avoid
overestimation.
Refer section Dueling network.7.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence with Python
Prateek Joshi

ISBN: 978-1-78646-439-2

Realize different classification and regression techniques
Understand the concept of clustering and how to use it to automatically segment
data
See how to build an intelligent recommender system
Understand logic programming and how to use it
Build automatic speech recognition systems
Understand the basics of heuristic search and genetic programming
Develop games using Artificial Intelligence
Learn how reinforcement learning works
Discover how to build intelligent applications centered on images, text, and time
series data
See how to use deep learning algorithms and build applications based on it

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-python

Other Books You May Enjoy

[463]

Statistics for Machine Learning
Pratap Dangeti

ISBN: 978-1-78829-575-8

Understand the Statistical and Machine Learning fundamentals necessary to
build models
Understand the major differences and parallels between the statistical way and
the Machine Learning way to solve problems
Learn how to prepare data and feed models by using the appropriate Machine
Learning algorithms from the more-than-adequate R and Python packages
Analyze the results and tune the model appropriately to your own predictive
goals
Understand the concepts of required statistics for Machine Learning
Introduce yourself to necessary fundamentals required for building supervised &
unsupervised deep learning models
Learn reinforcement learning and its application in the field of artificial
intelligence domain

https://www.packtpub.com/big-data-and-business-intelligence/statistics-machine-learning

Other Books You May Enjoy

[464]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Acrobot
 settings 262
agent environment interface 12
agent
 about 10
 training, to play Doom 187
algorithmic tasks 248
AlphaGo Zero
 about 323, 346
 alphagozero_agent.py 346
 controller.py 346, 348, 351
 features.py module 370
 features.py module module 329, 330
 implementing 325
 network.py module 330, 333, 334, 335, 337
 policy and value networks 325
 preprocessing.py module 326
 train.py 353, 354, 355
 training 324
AlphaGo
 about 320
 neural networks and MCTS, combining 322, 323
 reinforcement learning policy networks 321
 supervised learning policy networks 320
 value network 321
Anaconda
 download link 20
applications, RL
 about 16
 Computer Vision (CV) 17
 education 16
 finance 17
 inventory management 17
 manufacturing sector 17
 medicine and healthcare 16

 Natural Language Processing (NLP) 17
architecture, Deep Q Networks (DQN)
 algorithm 169
 convolutional network 166, 167
 experience replay 167
 rewards, clipping 169
 target network 168
artificial intelligence (AI) 7, 19, 129
Asynchronous Advantage Actor Critic (A3C)

algorithm
 about 203, 204, 220
 architecture 205
 mountain car example 207, 209, 213
 network, visualizing in TensorBoard 215, 218
 working 206
asynchronous advantage actor-critic (A3C)

algorithm
 about 286, 291, 295, 297
 experiments 311
 implementing 297, 298, 301, 303, 305, 306,

308, 310
Atari 2600 games
 references 130
 unsolved issues 153
Atari emulator
 building 131, 132, 133
 implementation 133, 134
 implementing, gym used 135
Atari game
 playing, by building agent 170, 171, 174, 178
Atari games
 about 130
 data preparation 136
 playing 248

[466]

B
backpropagation 319
backpropagation through time (BPTT) 268
basic elements, reinforcement learning
 policy function 141
 reward function 141
 state 140
 value function 141
basic Q-learning algorithm
 demonstrating 141, 143, 145, 146, 147, 148,

150, 153
Bellman equation 148
Bellman equation, solving
 dynamic programming (DP) technique, using 51
Bellman equation
 about 48
 deriving, for value and Q function 49, 51
 solving 51
Blackjack game
 playing, with Monte Carlo 76, 78, 81
board state 314

C
car racing game
 dueling DQN, using in 441, 442
CartPole
 about 244, 246, 251, 252, 254
 specifications 260
chatbot
 background, issues 358
 data parser 359
 data reader 362
 data, training 372, 378
 dataset 358
 helper methods 364, 367
 model 370, 372
 results 379, 381
 step-by-step guide 359
 testing 379, 381
classic control tasks 260, 262, 263
conjugate gradient method
 URL 235
constants 34
contextual bandits

 about 126
 reference 128
continuous environment 14
control tasks
 about 257, 259
 classic control tasks 259
convolutional neural network (CNN)
 about 184

D
data preparation, Atari games 136, 137, 139, 140
Deep Attention Recurrent Q Network (DARQN)
 about 184, 199
 architecture 200
 attention layer 200
deep deterministic policy gradient (DDPG)
 about 226
 used, for swinging pendulum 228, 234
Deep Q Network (DQN)
 about 164, 165, 184, 203, 220, 428
 architecture 166
 dueling network architecture 181, 182
deep Q-learning algorithm (DQN)
 about 140
 experiments 161, 163
 implementing 153, 155, 157, 158, 159, 160
deep Q-learning
 about 140, 256
 basic elements, of reinforcement learning 140
 basic Q-learning algorithm, demonstrating 141,

143, 145, 146, 148, 150, 152
Deep Recurrent Q Network (DRQN)
 about 184, 185, 186, 220, 428
 architecture 186, 187
 Doom 189, 194, 199
deep reinforcement learning 129
deep reinforcement learning (DRL) 164
DeepMind Lab 15
deterministic environment 13
deterministic policy gradient (DPG)
 about 256, 264
 actor-critic architecture 264
 algorithm 267
 experiments 275, 278
 implementing 268, 270, 271, 272, 273, 274

[467]

 theory 265, 267
discrete environment 14
Docker
 download link 21
 installing 21, 22
Doom
 about 188, 189
 playing, by training agent 187
 with Deep Recurrent Q Network (DRQN) 189,

194, 199
Double DQN 179
dueling network
 architecture 181, 182
 building 432
dynamic programming (DP) technique
 about 51, 74
 policy iteration algorithm, using 55, 58
 value iteration algorithm, using 52, 55

E
elements, reinforcement learning (RL)
 agent 10
 model 11
 policy function 11
 value function 11
environment wrapper functions 429, 431
episodic environment 14
epsilon-greedy policy 115
experience replay 167

F
financial market
 about 410
 actor script 413, 414
 agent script 416, 418, 420, 421
 background, issues 410
 critic script 414, 416
 data used 410, 412
 data, training 423, 425, 426
 final result 426
 helper script 421, 422
 step-by-step guide 412
frame-skipping technique 136
frozen lake problem, solving
 policy iteration algorithm, using 65, 68

 value iteration algorithm, using 60
frozen lake problem
 solving 58, 59
 value iteration algorithm, using 63
fully observable environment 13

G
Go
 about 313
 and AI research 314
 and other board games 314
GridWorld game
 reference 162

H
hard attention 201
Hidden Markov model 251

J
Jupyter notebook
 URL 222

K
Kullback–Leibler (KL) 235

M
Markov chain 42, 44
Markov Decision Process (MDP)
 about 42, 44, 184
 continuous tasks 45
 discount factor 45
 episodic tasks 45
 policy function 46
 reference 68
 rewards and returns 45
 state value function 47
 state-action value function (Q function) 47
Markov models
 about 251
 CartPole 251
Markov process 42, 44
Massively Multiplayer Online Role Playing Game

(MMORPGs) 453
MC-ES algorithm 85

[468]

mean-squared error (MSE) 321
Minecraft environment
 about 287, 288
 data preparation 289, 291
model 11
model-free 149
Monte Carlo control
 about 84
 exploration 84
 Monte Carlo control 88
 off-policy Monte Carlo control 89, 90
 on-policy Monte Carlo control 86
Monte Carlo exploring starts concept 85
Monte Carlo prediction algorithm
 about 74
 every visit 76
 first visit 76
Monte Carlo tree search
 about 315
 expansion 317
 mcts.py 337, 338, 341
 selection 315, 316
 simulation 318
 update step 319
Monte Carlo
 about 76
 Blackjack game, playing with 76, 78, 79, 82
 methods 70
 prediction algorithm 74
 used, for pi value estimation 71, 74
MuJoCo
 about 249
 reference 257
multi-agent environment 14
multi-agent reinforcement learning 453, 454
multi-armed bandit (MAB) problem
 about 113, 115
 epsilon-greedy policy 115
 softmax exploration algorithm 117
 Thompson sampling (TS) algorithm 121, 123
 upper confidence bound (UCB) algorithm 118,

119

multi-armed bandit (MAB)
 applications 124
 reference 127

 used, for identifying advertisement banner 124,
126

N
NAS, implementing
 about 390
 advantages 407, 408
 child network generating, controller used 399,

401

 child_network.py module 390, 393
 ChildCNN, testing 403
 cifar10_processor.py 393, 395
 config.py module 405
 controller generating, ways 397, 398
 controller.py module 395, 396
 exercises 407
 train.py module 405, 407
 train_controller method 401, 403
network
 training 435, 440
neural architecture search (NAS) 384
neural architecture search
 about 384
 algorithm, training 389
 child networks, generating 385, 387
 child networks, training 385, 386
 controller, training 387, 388
no operation (NOOP) action 137
non-episodic environment 14
nonusable ace 78

O
OpenAI Five 453
OpenAI Gym
 about 15, 24
 algorithmic tasks 248
 Atari 248
 basic cart pole environment, simulating 25, 26
 environment, running 246, 247
 error fixes 23, 24
 installation 245
 MuJoCo 249
 reference 257
 robot, training to walk 27
 Robotics 250

[469]

OpenAI Universe
 about 15, 29
 video game bot, building 29, 31
OpenAI
 about 244
 Gym 244
 reference 41
optimal value 48

P
partially observable environment 14
partially observable Markov Decision Process

(POMDP) 185
Pendulum
 specifications 261
pi value
 estimating, with Monte Carlo method 71, 74
placeholders 35
playout 318
policy function 11, 31, 46
policy gradient
 about 221
 URL 222
 using, for Lunar Lander 221
PolicyValueNetwork
 alphagozero_agent.py 342, 343, 345
 and MCTS, combining 341
prioritized experience replay 180, 181
Project Malmo 16
proportional prioritization 181
Proximal Policy Optimization (PPO) 240, 241

Q
Q learning, TD control
 about 96, 98
 and SARSA algorithm, differentiating 111
 used, for solving taxi problem 101, 103

R
rectifier nonlinearity (RELU) 147
recurrent deterministic policy gradient algorithm

(RDPG) 268
recurrent neural network (RNN)
 about 184
REINFORCE method 384, 387

reinforcement learning (RL)
 about 7, 9, 164, 221
 algorithm 9
 comparing, with ML paradigms 10
 elements 10
reinforcement learning, developments
 about 450
 multi-agent reinforcement learning 453, 454
 transfer learning 451, 452, 453
reinforcement learning
 attacks, susceptibility to 449, 450
 basic elements 140
 explainability/accountability 448, 449
 limitations, addressing 451
 reproducibility 447, 448
 resource efficiency 447
 shortcomings 446
replay buffer
 building 434
RL environments
 continuous environment 14
 deterministic environment 13
 discrete environment 14
 episodic and non-episodic environment 14
 fully observable environment 13
 partially observable environment 14
 single and multi-agent environment 14
 stochastic environment 13
 types 13
RL platforms
 about 15
 DeepMind Lab 15
 OpenAI Gym 15
 OpenAI Universe 15
 Project Malmo 16
 RL-Glue 15
 ViZDoom 16
Robotics 250
rollout 318

S
SARSA algorithm, TD control
 about 104, 107
 and Q learning, differentiating 111
 used, for solving taxi problem 108

sequential environment 14
SGF (Smart Game Format) 346
single-agent environment 14
soft attention 201
softmax exploration algorithm 117
state value function 47
state-action value function (Q function) 47
stochastic environment 13
system, setting up
 about 19
 Anaconda, installing 20
 Docker, installing 21
 OpenAI Gym, installing 22
 OpenAI Universe, installing 22

T
TD control
 about 95
 off-policy learning algorithm 95
 on-policy learning algorithm 95
 Q learning 96, 98, 99
 State-Action-Reward-State-Action (SARSA)

algorithm 104
temporal-difference (TD) learning 92
temporal-difference (TD) prediction 93, 94
TensorBoard
 about 37
 network visualization 215, 218
 scope, adding 38, 40
TensorFlow
 computation graph 35
 constants 34

 placeholders 34
 reference 41
 sessions 36
 TensorBoard 37
 variables 34
Thompson sampling (TS) algorithm 121
TMUX
 about 310
 reference 310
Trust Region Policy Optimization (TRPO) 235,

239

trust region policy optimization (TRPO) algorithm
 about 256, 278, 282, 283
 experiments, on MuJoCo tasks 284, 285
 theory 279, 281
types, attention layer
 hard attention 201
 soft attention 201

U
upper confidence bound (UCB) algorithm 118, 120
Upper Confidence Bound 1 Applied to Trees (UCT)

315

usable ace 78

V
value function 11
variables 34
video game bot
 building 29
ViZDoom 16

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Reinforcement Learning
	What is RL?
	RL algorithm
	How RL differs from other ML paradigms
	Elements of RL
	Agent
	Policy function
	Value function
	Model

	Agent environment interface
	Types of RL environment
	Deterministic environment
	Stochastic environment
	Fully observable environment
	Partially observable environment
	Discrete environment
	Continuous environment
	Episodic and non-episodic environment
	Single and multi-agent environment

	RL platforms
	OpenAI Gym and Universe
	DeepMind Lab
	RL-Glue
	Project Malmo
	ViZDoom

	Applications of RL
	Education
	Medicine and healthcare
	Manufacturing
	Inventory management
	Finance
	Natural Language Processing and Computer Vision

	Summary
	Questions
	Further reading

	Chapter 2: Getting Started with OpenAI and TensorFlow
	Setting up your machine
	Installing Anaconda
	Installing Docker
	Installing OpenAI Gym and Universe
	Common error fixes

	OpenAI Gym
	Basic simulations
	Training a robot to walk

	OpenAI Universe
	Building a video game bot

	TensorFlow
	Variables, constants, and placeholders
	Variables
	Constants
	Placeholders

	Computation graph
	Sessions
	TensorBoard
	Adding scope

	Summary
	Questions
	Further reading

	Chapter 3: The Markov Decision Process and Dynamic Programming
	The Markov chain and Markov process
	Markov Decision Process
	Rewards and returns
	Episodic and continuous tasks
	Discount factor
	The policy function
	State value function
	State-action value function (Q function)

	The Bellman equation and optimality
	Deriving the Bellman equation for value and Q functions

	Solving the Bellman equation
	Dynamic programming
	Value iteration
	Policy iteration

	Solving the frozen lake problem
	Value iteration
	Policy iteration

	Summary
	Questions
	Further reading

	Chapter 4: Gaming with Monte Carlo Methods
	Monte Carlo methods
	Estimating the value of pi using Monte Carlo

	Monte Carlo prediction
	First visit Monte Carlo
	Every visit Monte Carlo
	Let's play Blackjack with Monte Carlo

	Monte Carlo control
	Monte Carlo exploration starts
	On-policy Monte Carlo control
	Off-policy Monte Carlo control

	Summary
	Questions
	Further reading

	Chapter 5: Temporal Difference Learning
	TD learning
	TD prediction
	TD control
	Q learning
	Solving the taxi problem using Q learning

	SARSA
	Solving the taxi problem using SARSA

	The difference between Q learning and SARSA
	Summary
	Questions
	Further reading

	Chapter 6: Multi-Armed Bandit Problem
	The MAB problem
	The epsilon-greedy policy
	The softmax exploration algorithm
	The upper confidence bound algorithm
	The Thompson sampling algorithm

	Applications of MAB
	Identifying the right advertisement banner using MAB
	Contextual bandits
	Summary
	Questions
	Further reading

	Chapter 7: Playing Atari Games
	Introduction to Atari games
	Building an Atari emulator
	Getting started
	Implementation of the Atari emulator
	Atari simulator using gym

	Data preparation
	Deep Q-learning
	Basic elements of reinforcement learning
	Demonstrating basic Q-learning algorithm

	Implementation of DQN
	Experiments
	Summary

	Chapter 8: Atari Games with Deep Q Network
	What is a Deep Q Network?
	Architecture of DQN
	Convolutional network
	Experience replay
	Target network
	Clipping rewards
	Understanding the algorithm

	Building an agent to play Atari games
	Double DQN
	Prioritized experience replay
	Dueling network architecture
	Summary
	Questions
	Further reading

	Chapter 9: Playing Doom with a Deep Recurrent Q Network
	DRQN
	Architecture of DRQN

	Training an agent to play Doom
	Basic Doom game
	Doom with DRQN

	DARQN
	Architecture of DARQN

	Summary
	Questions
	Further reading

	Chapter 10: The Asynchronous Advantage Actor Critic Network
	The Asynchronous Advantage Actor Critic
	The three As
	The architecture of A3C
	How A3C works

	Driving up a mountain with A3C
	Visualization in TensorBoard

	Summary
	Questions
	Further reading

	Chapter 11: Policy Gradients and Optimization
	Policy gradient
	Lunar Lander using policy gradients

	Deep deterministic policy gradient
	Swinging a pendulum

	Trust Region Policy Optimization
	Proximal Policy Optimization
	Summary
	Questions
	Further reading

	Chapter 12: Balancing CartPole
	OpenAI Gym
	Gym
	Installation
	Running an environment
	Atari
	Algorithmic tasks
	MuJoCo
	Robotics

	Markov models
	CartPole

	Summary

	Chapter 13: Simulating Control Tasks
	Introduction to control tasks
	Getting started
	The classic control tasks

	Deterministic policy gradient
	The theory behind policy gradient
	DPG algorithm
	Implementation of DDPG
	Experiments

	Trust region policy optimization
	Theory behind TRPO
	TRPO algorithm
	Experiments on MuJoCo tasks

	Summary

	Chapter 14: Building Virtual Worlds in Minecraft
	Introduction to the Minecraft environment
	Data preparation
	Asynchronous advantage actor-critic algorithm
	Implementation of A3C
	Experiments
	Summary

	Chapter 15: Learning to Play Go
	A brief introduction to Go
	Go and other board games
	Go and AI research

	Monte Carlo tree search
	Selection
	Expansion
	Simulation
	Update

	AlphaGo
	Supervised learning policy networks
	Reinforcement learning policy networks
	Value network
	Combining neural networks and MCTS

	AlphaGo Zero
	Training AlphaGo Zero
	Comparison with AlphaGo

	Implementing AlphaGo Zero
	Policy and value networks
	preprocessing.py
	features.py
	network.py

	Monte Carlo tree search
	mcts.py

	Combining PolicyValueNetwork and MCTS
	alphagozero_agent.py

	Putting everything together
	controller.py
	train.py

	Summary
	References

	Chapter 16: Creating a Chatbot
	The background problem
	Dataset

	Step-by-step guide
	Data parser
	Data reader
	Helper methods
	Chatbot model
	Training the data
	Testing and results

	Summary

	Chapter 17: Generating a Deep Learning Image Classifier
	Neural Architecture Search
	Generating and training child networks
	Training the Controller
	Training algorithm

	Implementing NAS
	child_network.py
	cifar10_processor.py
	controller.py
	Method for generating the Controller
	Generating a child network using the Controller
	train_controller method
	Testing ChildCNN

	config.py
	train.py
	Additional exercises

	Advantages of NAS
	Summary

	Chapter 18: Predicting Future Stock Prices
	Background problem
	Data used
	Step-by-step guide
	Actor script
	Critic script
	Agent script
	Helper script
	Training the data
	Final result

	Summary

	Chapter 19: Capstone Project - Car Racing Using DQN
	Environment wrapper functions
	Dueling network
	Replay memory
	Training the network
	Car racing
	Summary
	Questions
	Further reading

	Chapter 20: Looking Ahead
	The shortcomings of reinforcement learning
	Resource efficiency
	Reproducibility
	Explainability/accountability
	Susceptibility to attacks

	Upcoming developments in reinforcement learning
	Addressing the limitations
	Transfer learning
	Multi-agent reinforcement learning

	Summary
	References

	Assessments
	Other Books You May Enjoy
	Index

